在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動(dòng)弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過(guò)定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動(dòng)弦,滿(mǎn)足直線與圓相切,求半徑的取值范圍?
(1)準(zhǔn)線方程:,焦點(diǎn)坐標(biāo);(2)證明見(jiàn)解析;(3).

試題分析:(1)根據(jù)拋物線標(biāo)準(zhǔn)方程確定焦點(diǎn)在哪個(gè)軸上及開(kāi)口方向,焦點(diǎn)為,準(zhǔn)線方程為;(2)本題實(shí)質(zhì)是直線與拋物線相交問(wèn)題,一般是設(shè)直線方程為,與拋物線方程聯(lián)立方程組,消去可得,再設(shè),則有,,而,把剛才求出的代入可得的關(guān)系,本題中求得為常數(shù),因此直線A一定過(guò)定點(diǎn);(3)由(2)利用可求出的關(guān)系式,
,則,而直線與圓相切,則圓心到直線的距離等于圓的半徑,即,由題意,作為關(guān)于的方程,此方程只有兩解,設(shè),則有,由于時(shí)是減函數(shù),且,即函數(shù)時(shí)遞減,在時(shí)遞增,因此為了保證有兩解,即只有一解,故要求.
試題解析:(1)準(zhǔn)線方程:    +2分   焦點(diǎn)坐標(biāo):   +4分
(2)設(shè)直線方程為 ,
 得        +6分
      +8分
  直線 過(guò)定點(diǎn)(0,2)   +9分
(3)      +11分
  +12分     令
  當(dāng)時(shí), 單調(diào)遞減,  +13分
當(dāng)時(shí), 單調(diào)遞增,   +14分
存在兩解即一解           +16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)作斜率為的直線交曲線、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn),試問(wèn)、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若圓(x-3)2+y2=16與拋物線y2=2px(p>0)的準(zhǔn)線相切,則p值為( 。
A.1B.2C.
1
2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、是關(guān)于的方程的兩個(gè)不等實(shí)根,則過(guò),兩點(diǎn)的直線與雙曲線的公共點(diǎn)的個(gè)數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn)P,線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若上不同的點(diǎn),且,則的取值范圍是(  )
A.B.
C.D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分13分)如圖,分別過(guò)橢圓左右焦點(diǎn)、的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率、、、滿(mǎn)足.已知當(dāng)軸重合時(shí),,
(1)求橢圓的方程;
(2)是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)底面半徑為的圓柱被與其底面所成角為的平面所截,截面是一個(gè)橢圓,當(dāng)時(shí),這個(gè)橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若(λ,μ∈R),λμ=,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線C:y2=4x的焦點(diǎn)為F,直線y=2x-4與C交于A,B兩點(diǎn),則cos∠AFB等于(  )
A.B.C.-D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案