已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)函數(shù)若對(duì)任意的都成立,求的取值范圍。
(1);(2) ;(3)的取值范圍為 。
【解析】
試題分析:(1),即
(3分)
(2)
(6分)
(3)
∴當(dāng)n為奇數(shù)時(shí)
(9分)
當(dāng)n為偶數(shù)時(shí)
綜上所述,的取值范圍為 (12分)
考點(diǎn):本題主要考查等比數(shù)列的的基礎(chǔ)知識(shí),“分組求和法”。
點(diǎn)評(píng):中檔題,本題具有較強(qiáng)的綜合性,本解答通過利用韋達(dá)定理,確定得到數(shù)列相鄰項(xiàng)之間的關(guān)系得到了證明目的,根據(jù),進(jìn)一步轉(zhuǎn)化成數(shù)列求和問題,利用“分組求和法”化簡,達(dá)到解題目的。(3)是恒成立問題,注意轉(zhuǎn)化成了求“最大值”,是問題得解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高二上學(xué)期數(shù)學(xué)理卷A 題型:解答題
.(本小題滿分14分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程 的兩實(shí)根,且,記數(shù)列的前項(xiàng)和為.
(1)求;
(2)求證:數(shù)列是等比數(shù)列;
(3)設(shè),問是否存在常數(shù),使得對(duì)都成立,若存在,
求出的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程N的兩根,且.
(1) 求數(shù)列和的通項(xiàng)公式;
(2) 設(shè)是數(shù)列的前項(xiàng)和, 問是否存在常數(shù),使得對(duì)任意N都成立,若存在, 求出的取值范圍; 若不存在, 請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第三次月考理科數(shù)學(xué) 題型:解答題
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)若對(duì)任意的都成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高二上學(xué)期數(shù)學(xué)理卷A 題型:解答題
.(本小題滿分14分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程 的兩實(shí)根,且,記數(shù)列的前項(xiàng)和為.
(1)求;
(2)求證:數(shù)列是等比數(shù)列;
(3)設(shè),問是否存在常數(shù),使得對(duì)都成立,若存在,
求出的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com