已知集合A={x|ax2-x+b=0}只有一個(gè)元素-1,求實(shí)數(shù)ab的值.
考點(diǎn):元素與集合關(guān)系的判斷
專題:集合
分析:討論a=0,和a≠0,a≠0,一元二次方程ax2-x+b=0只有一個(gè)實(shí)數(shù)根,所以△=1-4ab=0,這樣即可求出ab.這兩種情況討論完之后,ab便求出來了.
解答: 解:若a=0,x=b=-1,∴a=0符合條件,此時(shí)ab=0;
若a≠0,則△=1-4ab=0,∴ab=
1
4
;
∴ab=0,或ab=
1
4
點(diǎn)評(píng):考查一元一次方程,一元二次方程解的情況,以及一元二次方程的根與判別式△的關(guān)系,注意不要漏了a=0的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+i)•z=-i,那么復(fù)數(shù)|z|-z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∅表示空集,N表示自然數(shù)集,則下列關(guān)系式中,正確的是( 。
A、0∈∅B、∅⊆N
C、0⊆ND、∅∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a+2,(a+1)2,|a|},若1∈A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3ax2+3(a+2)x+1.
(1)若函數(shù)f(x)既有極大值又有極小值,則求實(shí)數(shù)a的取值范圍.
(2)當(dāng)a=3時(shí),求f(x)的極值;并寫出此時(shí)函數(shù)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=bx3+ax2-3x在x=1和x=3處取得極值.
(1)求a,b的值.
(2)求函數(shù)f(x)極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-a2x+m+2(a>0),
(Ⅰ)若f(x)在[-1,1]內(nèi)沒有極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),方程f(x)=0有三個(gè)互不相同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求N∩(∁UM);
(2)若N⊆P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
3
x3-2x2+1,
(Ⅰ)求f(x)單調(diào)區(qū)間 
(Ⅱ)求f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案