分析 (1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷并證明f(x)的奇偶性;
(2)根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷并證明f(x)的單調(diào)性;
(3)將不等式恒成立進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.
解答 解:(1)∵x∈R,f(-x)=(a-1)(a-x-ax)=-f(x),
∴f(x)為奇函數(shù); …(2分)
(2)設(shè)x1、x2∈R,且x1<x2
則$f({x_1})-f({x_2})=({a-1})({{a^{x_1}}-{a^{-{x_1}}}})-({a-1})({{a^{x_2}}-{a^{-{x_2}}}})$=$({a-1})[{({{a^{x_1}}-{a^{x_2}}})-({{a^{-{x_1}}}-{a^{-{x_2}}}})}]$=$({a-1})[{({{a^{x_1}}-{a^{x_2}}})-\frac{{{a^{x_2}}-{a^{x_1}}}}{{{a^{x_1}}•{a^{x_2}}}}}]$=$({a-1})({{a^{x_1}}-{a^{x_2}}})({1+\frac{1}{{{a^{{x_1}+{x_2}}}}}})$
當(dāng)a>1時(shí),$a>1,{a^{x_1}}-{a^{x_2}}<0,1+\frac{1}{{{a^{{x_1}+{x_2}}}}}>0$,⇒f(x1)<f(x2),f(x)為R上的增函數(shù);
當(dāng)a<1時(shí),$a<1,{a^{x_1}}-{a^{x_2}}>0,1+\frac{1}{{{a^{{x_1}+{x_2}}}}}>0$,⇒f(x1)<f(x2),f(x)為R上的增函數(shù).
綜上可得,當(dāng)a>0,a≠1時(shí),f(x)為R上的增函數(shù). …(8分)
(3)f(acos2x-a2)+f(6acosx-1)≤0對(duì)任意$x∈[{\frac{π}{3},\frac{π}{2}}]$恒成立,
?f(acos2x-a2)≤f(1-6acosx)對(duì)任意$x∈[{\frac{π}{3},\frac{π}{2}}]$恒成立
?f(a(2cos2x-1)-a2)≤f(1-6acosx)對(duì)任意$x∈[{\frac{π}{3},\frac{π}{2}}]$恒成立
?f(2at2-a2-a)≤f(1-6at)對(duì)任意$t∈[{0,\frac{1}{2}}]$恒成立
?2at2+6at-a2-a-1≤0對(duì)任意$t∈[{0,\frac{1}{2}}]$恒成立
?$\left\{\begin{array}{l}a>0,a≠1\\ 2a{({\frac{1}{2}})^2}+6a•\frac{1}{2}-{a^2}-a-1≤0\end{array}\right.$
?$a∈({0,\frac{1}{2}}]∪[{2,+∞})$. …(14分)
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性,單調(diào)性的判斷,以及函數(shù)恒成立問(wèn)題,利用定義法是判斷函數(shù)奇偶性和單調(diào)性的常用方法,考查學(xué)生的轉(zhuǎn)化意識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $1-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1113 | B. | 1110 | C. | 1107 | D. | 999 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\sqrt{2})$ | B. | $(\sqrt{2},\sqrt{3})$ | C. | $(\sqrt{3},2)$ | D. | $(\sqrt{2},2)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com