【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

【答案】(1)a=-1,b=1;(2)-1.

【解析】1求導得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構(gòu)造,求出的單調(diào)性,由, , , ,可得存在唯一的零點,使得,利用單調(diào)性可求出,即可求出的最大值.

1, .

由題意知.

(2)由(1)知: ,

對任意恒成立

對任意恒成立

對任意恒成立.

,.

由于,所以上單調(diào)遞增.

, , ,

所以存在唯一的,使得,且當時, 時, . 單調(diào)遞減,在上單調(diào)遞增.

所以.

,即,.

.

, .

又因為對任意恒成立

, .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】圓x2+y2﹣2x+4y+3=0的圓心到直線x﹣y=1的距離為:( )
A.2
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

是棱的中點, 在棱上,且.

(1)證明:平面平面

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線y2=4x的焦點為F,過點F的直線與拋物線交于A,B兩點,過AB的中點M作準線的垂線與拋物線交于點P,若 ,則弦長|AB|等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間 上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C1的圓心在坐標原點O,且恰好與直線l1:x﹣2y+3 =0相切,點A為圓上一動點,AM⊥x軸于點M,且動點N滿足 ,設(shè)動點N的軌跡為曲線C.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于不同兩點A,B,且滿足 (O為坐標原點),求線段AB長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的斜率為k,經(jīng)過點(1,﹣1),將直線向右平移3個單位,再向上平移2個單位,得到直線m,若直線m不經(jīng)過第四象限,則直線l的斜率k的取值范圍是

查看答案和解析>>

同步練習冊答案