已知曲線C1:y=ax2,(a>0)上一點(diǎn)A(1,a)到原點(diǎn)的距離是
26
,過(guò)原點(diǎn)O作OM、ON交C1于M、N兩點(diǎn),直線MN交y軸于點(diǎn)Q(0,y0),
(1)求曲線C1的方程;(2)當(dāng)∠MON為銳角時(shí),求y0的取值范圍.
分析:(1)由題意可得
1+a2
=
26
,故a=5,故曲線C1的方程為 y=5x2
(2)設(shè)M (m,5m2 )、N (n,5n2 ),則由直線MN的方程求出y0=-5mn,由∠MON為銳角可得
OM
ON
>0,可得 mn<-
1
25
,或 mn>0,從而求得y0的取值范圍.
解答:解:(1)由題意可得
1+a2
=
26
,∴a=5,故曲線C1的方程為 y=5x2
(2)設(shè)M (m,5m2 )、N (n,5n2 ),則直線MN的方程為 
y-5n2
5m2-5n2
x-n
m-n

令 x=0,可得 y0=-5mn.
由∠MON為銳角可得
OM
ON
=mn+25m2n2>0,∴mn<-
1
25
,或 mn>0,
∴y0<0,或  y0
1
5
,
故y0的取值范圍是(-∞,0)∪(
1
5
,+∞)
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,求出 mn<-
1
25
,或 mn>0,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=t(0<t<1)與曲線C1,C2分別交于B,D.
(Ⅰ)寫出四邊形ABOD的面積S與t的函數(shù)關(guān)系式S=f(t);
(Ⅱ)討論f(t)的單調(diào)性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1:y=ax2+b和曲線C2:y=2blnx(a,b∈R)均與直線l:y=2x相切.
(1)求實(shí)數(shù)a、b的值;
(2)設(shè)直線x=t(t>0)與曲線C1,C2及直線l分別相交于點(diǎn)M,N,P,記f(t)=|MP|-|NP|,求f(t)在區(qū)間(0,e](e為自然對(duì)數(shù)的底)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=
1
3
與曲線C1,C2分別交于B,D.則四邊形ABOD的面積S為( 。
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波二模)已知曲線C1:y=x2+4和C2:y=2x-x2,直線l1與C1、C2分別相切于點(diǎn)A、B,直線l2(不同于l1)與C1、C2分別相切于點(diǎn)C、D,則AB與CD交點(diǎn)的橫坐標(biāo)是
1
2
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案