9.定積分${∫}_{0}^{2}$(2x+1)dx的值為(  )
A.6B.5C.4D.3

分析 求出被積函數(shù)的原函數(shù),再計算定積分的值.

解答 解:定積分${∫}_{0}^{2}$(2x+1)dx=$({x}^{2}+x){|}_{0}^{2}$=6.
故選:A.

點(diǎn)評 本題主要考查了定積分的幾何意義,根據(jù)數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線|x|+y2-3y=0的對稱軸方程是x=0,y的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+4φ)(A>0,ω>0,0<φ<$\frac{π}{8}$)的部分圖象如圖所示,若將函數(shù)f(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的$\frac{1}{4}$,再向右平移$\frac{π}{6}$個單位,所得到的函數(shù)g(x)的解析式為( 。
A.g(x)=2sinxB.g(x)=2sin2xC.g(x)=2sin$\frac{1}{4}$xD.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列幾個命題:
①設(shè)a=lge,b=(lge)2,c=lg$\sqrt{e}$,則b<c<a;
②“0<a≤$\frac{1}{5}$”是“函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù)”的充分必要條件;
③已知平面向量α,β(α≠0,α≠β),滿足|β|=1,且α與β-α的夾角為120°,則|α|的取值范圍是(0,$\frac{2\sqrt{3}}{3}$];
④在三角形ABC中,∠A,∠B,∠C所對的邊長分別為a,b,c其外接圓的半徑R=$\frac{5\sqrt{6}}{36}$,則(a2+b2+c2)($\frac{1}{si{n}^{2}A}$$+\frac{1}{si{n}^{2}B}$$+\frac{1}{si{n}^{2}C}$)的最小值為$\frac{25}{6}$.
其中正確命題為①④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知ABCDEF為正六邊形,若向量$\overrightarrow{AB}$=($\sqrt{3}$,-1),則|$\overrightarrow{DC}$-$\overrightarrow{DE}$|=$2\sqrt{3}$;$\overrightarrow{EC}$+$\overrightarrow{FE}$=$(2\sqrt{3},-2)$.(用坐標(biāo)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在四面體P-ABC中,PA=PB=PC=1,∠APB=∠BPC=∠CPA=90°,則該四面體P-ABC的外接球的表面積為(  )
A.πB.$\sqrt{3}$πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{1-x,x≤0}\end{array}\right.$,則f(f(-99)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=|2x-1|-|x+1|,
(Ⅰ)求f(x)<0的解集;
(Ⅱ)當(dāng)x<-1時,f(x)>f(a),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知sinα=-$\frac{2}{3}$,α∈(π,$\frac{3π}{2}$),cosβ=$\frac{3}{4}$,β∈($\frac{3π}{2}$,2π),求cos(β-α)的值.

查看答案和解析>>

同步練習(xí)冊答案