5.設(shè)函數(shù)y=f(x),x∈R“y=|f(x)|是偶函數(shù)”是“y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)”的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

分析 根據(jù)函數(shù)奇偶性與函數(shù)圖象之間的關(guān)系,結(jié)合充分條件和必要條件的定義進(jìn)行判斷.

解答 解:若y=|f(x)|是偶函數(shù),則不能推出y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),即充分性不成立,
反之若y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)f(x)是奇函數(shù),則f(-x)=-f(x),
則|f(-x)|=|-f(x)|=|f(x)|,
則y=|f(x)|是偶函數(shù)是偶函數(shù),即必要性成立,
則“y=|f(x)|是偶函數(shù)”是“y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)”的必要不充分條件,
故選:C

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$sin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{4}\;,\;\;θ∈({-\frac{π}{2}\;,\;\;0})$,則sinθcosθ=-$\frac{3}{8}$,cosθ-sinθ=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)橢圓$\frac{x^2}{4}+{y^2}=1$的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,M是橢圓上任一動(dòng)點(diǎn),則$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$g(x)=alnx+\frac{1}{2}{x^2}+({1-b})x$.
(1)若g(x)在點(diǎn)(1,g(1))處的切線(xiàn)方程為8x-2y-3=0,求a,b的值;
(2)若b=a+1,x1,x2是函數(shù)g(x)的兩個(gè)極值點(diǎn),試比較-4與g(x1)+g(x2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,則△ABC的面積為(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如表):
零件數(shù)x(個(gè))1020304050
加工時(shí)間y(分鐘)6268758189
由最小二乘法求得回歸方程 $\widehat{y}$=0.67x+a,則a的值為54.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,$∠A=\frac{π}{3},BC=4\sqrt{3}$,則△ABC的周長(zhǎng)為( 。
A.$4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$B.$4\sqrt{3}+8sin(B+\frac{π}{3})$C.$4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$D.$4\sqrt{3}+8cos(B+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}滿(mǎn)足a4-a2=4,a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿(mǎn)足${b_n}={(\sqrt{2})^{a_n}}$,求數(shù)列{bn}的前8項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$sin(α+\frac{π}{6})=\frac{1}{3}$,則$cos(2α-\frac{2π}{3})$的值是( 。
A.$\frac{5}{9}$B.$-\frac{8}{9}$C.$-\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案