17.在△ABC中,$∠A=\frac{π}{3},BC=4\sqrt{3}$,則△ABC的周長為( 。
A.$4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$B.$4\sqrt{3}+8sin(B+\frac{π}{3})$C.$4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$D.$4\sqrt{3}+8cos(B+\frac{π}{3})$

分析 由正弦定理可得$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,利用三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理,化簡即可得解.

解答 解:∵$∠A=\frac{π}{3},BC=4\sqrt{3}$,
∴由正弦定理可得:$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,
∴△ABC的周長=BC+AB+AC=4$\sqrt{3}$+8sinC+8sinB
=4$\sqrt{3}$+8sin($\frac{2π}{3}$-B)+8sinB
=4$\sqrt{3}$+8($\frac{\sqrt{3}}{2}$cosB+$\frac{3}{2}$sinB)
=4$\sqrt{3}$+8$\sqrt{3}$sin(B+$\frac{π}{6}$).
故選:A.

點(diǎn)評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列幾個(gè)命題正確的個(gè)數(shù)是( 。
①方程x2+(a-3)x+a=0有一個(gè)正根,一個(gè)負(fù)根,則a<0;
②函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x+1)的定義域是[-1,3],則f(x2)的定義域是[0,2];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A,B,C是平面上不共線的三點(diǎn),O是△ABC的重心,動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\frac{1}{3}({\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+2\overrightarrow{OC}})$,則P一定為△ABC的( 。
A.AB邊中線的三等分點(diǎn)(非重心)B.AB邊的中點(diǎn)
C.AB邊中線的中點(diǎn)D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)y=f(x),x∈R“y=|f(x)|是偶函數(shù)”是“y=f(x)的圖象關(guān)于原點(diǎn)對稱”的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(a-bx3)ex-$\frac{lnx}{x}$,且函數(shù)f(x)的圖象在點(diǎn)(1,e)處的切線與直線x-(2e+1)y-3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當(dāng)x∈(0,1)時(shí),f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān)與教育無關(guān)合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若$f(x)=\left\{\begin{array}{l}f(x-4),x>0\\{2^x}+\int_{\;0}^{\;\frac{π}{6}}{cos3xdx,x≤0}\end{array}\right.$,則f(2016)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在正方體ABCD-A1B1C1D1中,直線AB1與平面ABC1D1所成的角的正弦值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=xex在極值點(diǎn)處的切線方程是y=-$\frac{1}{e}$.

查看答案和解析>>

同步練習(xí)冊答案