【題目】如圖四邊形是正方形,平面,平面,,
(1)求證:平面平面;
(2)若點(diǎn)為線段中點(diǎn).證明:平面.
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1)平面AMD內(nèi)的直線MA,AD,分別平行平面BPC內(nèi)的直線PB,BC,即可證明平面平面;
(2)連接AC,設(shè)AC∩BD=F,連接EF,分別證明ME⊥PB,ME⊥BD,即可證明平面PBD.
證明:(1)因?yàn)?/span>PB⊥平面ABCD,MA⊥平面ABCD,
所以PBMA.
因PB平面BPC,MA不在平面BPC內(nèi),
所以MA平面BPC,同理DA平面BPC,
因?yàn)?/span>MA平面AMD,AD平面AMD,MA∩AD=A,
所以平面AMD平面BPC;
(2)連接AC,設(shè)AC∩BD=F,連接EF.
因ABCD為正方形,所以F為BD中點(diǎn).
因?yàn)?/span>E為PD中點(diǎn),所以.因?yàn)?/span>,
所以,
所以AFEM為平行四邊形.
所以MEAF.
因?yàn)?/span>PB⊥平面ABCD,AF平面ABCD,
所以PB⊥AF,
所以ME⊥PB,
因?yàn)?/span>ABCD為正方形,所以AC⊥BD,所以ME⊥BD,
所以ME⊥平面BDP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(1)證明:當(dāng)恒成立;
(2)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,角以為始邊,終邊與單位圓相交于點(diǎn).過點(diǎn)的圓的切線交軸于點(diǎn),點(diǎn)的橫坐標(biāo)關(guān)于角的函數(shù)記為. 則下列關(guān)于函數(shù)的說法正確的( )
A. 的定義域是
B. 的圖象的對(duì)稱中心是
C. 的單調(diào)遞增區(qū)間是
D. 對(duì)定義域內(nèi)的均滿足
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有6張卡片,上面分別寫著如下六個(gè)定義域?yàn)?/span>的函數(shù):, ,, ,,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線 垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).
(I)求橢圓C的方程;
(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線 交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線的方程為.
(1)求證:不論為何值,直線必過一定點(diǎn);
(2)若直線分別與軸正半軸,軸正半軸交于點(diǎn),,當(dāng)而積最小時(shí),求的周長(zhǎng);
(3)當(dāng)直線在兩坐標(biāo)軸上的截距均為整數(shù)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長(zhǎng)方形的三邊構(gòu)成(如圖所示).已知隧道總寬度為,行車道總寬度為,側(cè)墻面高, 為,弧頂高為.
()建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.
()為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請(qǐng)計(jì)算車輛通過隧道的限制高度是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司決定每月給推銷員確定個(gè)具體的銷售目標(biāo),對(duì)推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個(gè)月的月銷售額(單位:萬(wàn)元),繪制成如圖所示的頻率分布直方圖.
(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.
②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬(wàn)元時(shí),能夠使70%的推銷員完成任務(wù)?并說明理由.
(2)該公司決定從月銷售額為和的兩個(gè)小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來(lái)自同一個(gè)小組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com