已知函數(shù)f(x)=loga(ax-1)(a>0,a≠1),

(1)證明函數(shù)f(x)的圖象在y軸的一側;

(2)設A(x1,y1)、B(x2,y2)(x1<x2)是圖象上兩點,證明直線AB的斜率大于0;

(3)求函數(shù)y=f(2x)與y=f-1(x)的圖象的交點坐標.

(1)證明:由ax-1>0,得ax>1.

    當a>1時,x>0,此時f(x)的圖象在y軸右側;

    當0<a<1時,x<0,此時f(x)的圖象在y軸左側.

    故函數(shù)f(x)的圖象總在y軸的一側.

(2)證明:當a>1時,y=ax是增函數(shù),設0<x1<x2,則1<,于是0< -1<-1.

    故loga(-1)<loga(-1),即y1<y2;

    當0<a<1時,y=ax是減函數(shù),設x1<x2<0,則>1,于是-1>-1>0.

    故loga(-1)<loga(-1),即y1<y2.

∴不論a>1或0<a<1,當x1<x2時,總有y1<y2,∴直線AB的斜率>0.

(3)解:∵f(x)=loga(ax-1),

∴f-1(x)=loga(ax+1),

f(2x)=loga(a2x-1).

∴ax+1=a2x-1,即(ax)2-ax-2=0.

∴ax=2.∴x=loga2,f-1(x)=loga3.

∴交點坐標為(loga2,loga3).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
(2)當a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達式和切線l的方程;
(2)當x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及a的值;
(2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調性;
(2)設f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習冊答案