已知為等比數(shù)列,是等差數(shù)列,
(Ⅰ)求數(shù)列的通項公式及前項和;
(2)設(shè),其中,試比較的大小,并加以證明.
(Ⅰ),;(Ⅱ)當時,;當時,;當時,

試題分析:(Ⅰ)求數(shù)列的通項公式及前項和,由已知是等差數(shù)列,且,只需求出公差即可,由已知,且為等比數(shù)列,,只需求出公比即可,由得,,討論是否符合條件,從而得,這樣問就可以解決;(Ⅱ)設(shè),,其中,試比較的大小,關(guān)鍵是求出的關(guān)系式,由已知是等差數(shù)列,由(Ⅰ)知,即可寫出,,兩式作差得,討論即可.
試題解析:(Ⅰ)設(shè)的公比為,由得,,。  1分
時,,這與矛盾  2分
時,,符合題意。             3分
設(shè)的公差為,由,得:      
                                 5分
所以                                   7分
(Ⅱ)組成公差為的等差數(shù)列,所以   8分
組成公差為的等差數(shù)列,   所以
                  10分
故當時,;當時,;當時,  12分項和,比較大。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且;數(shù)列的前n項和為,且。
(I)求數(shù)列,的通項公式;
(II)若,為數(shù)列的前n項和,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列滿足:.
(1)求的通項公式;
(2)若(),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等差數(shù)列中,,公差,且它的第2項,第5項,第14項分別是等比數(shù)列的第2項,第3項,第4項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個圖案:

則第個圖案中有白色地面磚                  塊.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個數(shù)為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.

(1)        
(2)        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列的前項和為,若,則當最大時的值是(      )
A.8B.4C.5D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是等差數(shù)列的前項和,且,則等于(   )
A.3B.5C.8D.15

查看答案和解析>>

同步練習冊答案