A. | B. | C. | D. |
分析 由函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函數(shù),又是增函數(shù),則由復(fù)合函數(shù)的性質(zhì),我們可得k=1,0<a<1,由此不難判斷函數(shù)的圖象.
解答 解:∵函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是奇函數(shù)
則f(-x)+f(x)=0
即(k-1)(ax-a-x)=0
則k=1
又∵f(x)=ax-ka-x(a>0且a≠1)在(-∞,+∞)上是減函數(shù)
則0<a<1,
則g(x)=loga(x+k)=loga(x+1)
函數(shù)圖象必過原點,且為減函數(shù)
故選:D.
點評 若函數(shù)在其定義域為為奇函數(shù),則f(-x)+f(x)=0,若函數(shù)在其定義域為為偶函數(shù),則f(-x)-f(x)=0,這是函數(shù)奇偶性定義的變形使用,另外函數(shù)單調(diào)性的性質(zhì),在公共單調(diào)區(qū)間上:增函數(shù)-減函數(shù)=增函數(shù)也是解決本題的關(guān)鍵
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{14}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{18}$ | D. | $\frac{1}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.477 | B. | 0.628 | C. | 0.954 | D. | 0.977 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com