1.下列說法:①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;②設(shè)有一個(gè)回歸方程y=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;③線性回歸方程y=bx+a必過$(\overline x,\overline y)$;④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患肺。黄渲绣e(cuò)誤的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 根據(jù)概率與統(tǒng)計(jì)的知識,對題目中的問題進(jìn)行分析、判斷即可.

解答 解:對于①,方差反映一組數(shù)據(jù)的波動(dòng)大小,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變,正確;
對于②,設(shè)有一個(gè)回歸方程y=3-5x,變量x增加一個(gè)單位時(shí),y應(yīng)平均減少5個(gè)單位,②錯(cuò)誤;
對于③,線性回歸方程y=bx+a必過樣本中心點(diǎn)$(\overline x,\overline y)$,正確;
對于④,在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),
我們說某人吸煙,那么他有99%的可能患肺病,錯(cuò)誤;
綜上,其中錯(cuò)誤的個(gè)數(shù)是2.
故選:C.

點(diǎn)評 本題考查了線性回歸方程和獨(dú)立性檢驗(yàn)以及方差的變化特點(diǎn)、相關(guān)關(guān)系的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)全集∪={a,b,c,d},集合M={ a,c,d },N={b,d},則(∁UM)∩N等于(  )
A.B.lvfjdh9C.{a,c}D.{b,d}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.全集U={2,3,4,5,6},集合A={2,5,6},B={3,5},則(∁UA)∩B={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,則a2014的值為( 。
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-2tx-4t-4,g(x)=$\frac{1}{x}$-(t+2)2,兩個(gè)函數(shù)圖象的公切線恰為3條,則實(shí)數(shù)t的取值范圍為($\frac{3\root{3}{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=3x+cos(x+φ),x∈R,則“φ=$\frac{π}{2}$”是“函數(shù)f(x)為奇函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列四種說法:
①函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=log1ax(a>0,且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$與y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在(0,+∞)上都是增函數(shù).
其中正確說法的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知銳角△ABC中的三個(gè)內(nèi)角分別為A,B,C.
(1)設(shè)$\overrightarrow{BC}•\overrightarrow{CA}=\overrightarrow{CA}•\overrightarrow{AB}$,判斷△ABC的形狀;
(2)設(shè)向量$\overrightarrow s=(2sinC,-\sqrt{3})$,$\overrightarrow t=(cos2C,2{cos^2}\frac{C}{2}-1)$,且$\overrightarrow s∥\overrightarrow t$,若$sinA=\frac{1}{3}$,求$sin(\frac{π}{3}-B)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的a值為(  )
A.-3B.$\frac{1}{3}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案