【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數(shù)x0 , 使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.
【答案】D
【解析】解:由題意可得,f(x0)是函數(shù)f(x)的最小值,f(x0+2016π)是函數(shù)f(x)的最大值.
顯然要使結(jié)論成立,只需保證區(qū)間[x0 , x0+2016π]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間即可.
又f(x)=cosωx(sinωx+ cosωx)= sin2ωx+ =sin(2ωx+ )+ ,
故2016π≥ ,求得ω≥ ,
故則ω的最小值為 ,
故選:D.
【考點精析】利用兩角和與差的余弦公式和兩角和與差的正弦公式對題目進行判斷即可得到答案,需要熟知兩角和與差的余弦公式:;兩角和與差的正弦公式:.
科目:高中數(shù)學 來源: 題型:
【題目】先把正弦函數(shù)y=sinx圖象上所有的點向左平移 個長度單位,再把所得函數(shù)圖象上所有的點的縱坐標縮短到原來的 倍(橫坐標不變),再將所得函數(shù)圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),則所得函數(shù)圖象的解析式是( )
A.y=2sin( x+ )
B.y= sin(2x﹣ )
C.y=2sin( x﹣ )
D.y= sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( )
A.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向左平移 個單位
B.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向右平移 個單位
C.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的 ,然后再向右平移 個單位
D.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的 ,然后再向左平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某個品牌的U盤進行壽命追蹤調(diào)查,所得情況如下面頻率分布直方圖所示.
(1)圖中縱坐標y0處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原y0;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取20個U盤,壽命為1030萬次之間的應抽取幾個;
(3)從(2)中抽出的壽命落在1030萬次之間的元件中任取2個元件,求事件“恰好有一個壽命為1020萬次,一個壽命為2030萬次”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示,在這些用戶中,用電量落在區(qū)間[150,250)內(nèi)的戶數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在R上存在導數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當x>0時,f(x)> 恒成立,求正整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合M是R的子集,如果點x0∈R滿足:a>0,x∈M,0<|x﹣x0|<a,稱x0為集合M的聚點.則下列集合中以1為聚點的有( ) ① ;
② ;
③Z;
④{y|y=2x}.
A.①④
B.②③
C.①②
D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com