觀察下列算式:

13=1,

23=3+5,

33=7+9+11,

43=13+15+17+19,

……

若某數(shù)m3按上述規(guī)律展開(kāi)后,發(fā)現(xiàn)等式右邊含有“2 013”這個(gè)數(shù),則m=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱{an}是“H數(shù)列”.

(1)若數(shù)列{an}的前n項(xiàng)和Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;

(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0.若{an}是“H數(shù)列”,求d的值;

(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得anbncn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知等比數(shù)列的各項(xiàng)都為正數(shù),且當(dāng)n≥3時(shí),a4a2n-4=102n,則數(shù)列l(wèi)ga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n項(xiàng)和Sn等于(  )

A.n·2n                                B.(n-1)·2n-1-1

C.(n-1)·2n+1                        D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 推理“①矩形是平行四邊形;②三角形不是平行四邊形;③三角形不是矩形”中的小前提是(  )

A.①                                   B.②

C.③                                   D.①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


觀察下列圖形中小正方形的個(gè)數(shù),則第6個(gè)圖中有__________個(gè)小正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


用數(shù)學(xué)歸納法證明等式1+3+5+…+(2n+1)=(n+1)2(n∈N*)的過(guò)程中,第二步假設(shè)nk時(shí)等式成立,則當(dāng)nk+1時(shí)應(yīng)得到(  )

A.1+3+5+…+(2k+1)=k2

B.1+3+5+…+(2k+3)=(k+2)2

C.1+3+5+…+(2k+1)=(k+2)2

D.1+3+5+…+(2k+3)=(k+3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


用數(shù)學(xué)歸納法證明:12+32+52+…+(2n-1)2n(4n2-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


下面四個(gè)條件中,使a>b成立的充分不必要條件是(  )

A2>ab                              B.ac>bc

C.a2>b2                                 D.ab>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


要制作一個(gè)容積為4 m3,高為1 m的無(wú)蓋長(zhǎng)方體容器.已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是________元.

查看答案和解析>>

同步練習(xí)冊(cè)答案