【題目】已知a∈R,若 在區(qū)間(0,1)上只有一個(gè)極值點(diǎn),則a的取值范圍為

【答案】a>0
【解析】解:∵f(x)=(x+ )ex , ∴f′(x)=( )ex
設(shè)h(x)=x3+x2+ax﹣a,
∴h′(x)=3x2+2x+a,
a>0,h′(x)>0在(0,1)上恒成立,即函數(shù)h(x)在(0,1)上為增函數(shù),
∵h(yuǎn)(0)=﹣a<0,h(1)=2>0,
∴h(x)在(0,1)上有且只有一個(gè)零點(diǎn)x0 , 使得f′(x0)=0,
且在(0,x0)上,f′(x)<0,在(x0 , 1)上,f′(x)>0,
∴x0為函數(shù)f(x)在(0,1)上唯一的極小值點(diǎn);
a=0時(shí),x∈(0,1),h′(x)=3x2+2x>0成立,函數(shù)h(x)在(0,1)上為增函數(shù),
此時(shí)h(0)=0,∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函數(shù)f(x)在(0,1)上為單調(diào)增函數(shù),函數(shù)f(x)在(0,1)上無極值;
a<0時(shí),h(x)=x3+x2+a(x﹣1),
∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函數(shù)f(x)在(0,1)上為單調(diào)增函數(shù),函數(shù)f(x)在(0,1)上無極值.
綜上所述,a>0,所以答案是:a>0.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應(yīng)填入的條件為(
A.k≤3
B.k≤4
C.k≤5
D.k≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若 = , = = ,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF= AD=a,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隧道的截面是半徑為4.0 m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m,高為3 m的貨車能不能駛?cè)脒@個(gè)隧道?假設(shè)貨車的最大寬度為a m,那么要正常駛?cè)朐撍淼,貨車的限高為多少?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】到直線3x-4y+1=0的距離為3,且與此直線平行的直線方程是 ( )
A.3x-4y+4=0
B.3x-4y+4=0或3x-4y-2=0
C.3x-4y+16=0
D.3x-4y+16=0或3x-4y-14=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,最小正周期為π且為奇函數(shù)的是(
A.y=sin
B.y=cos
C.y=cos2x
D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,且 ,則t=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案