【題目】已知的展開式中,前三項(xiàng)系數(shù)的絕對值成等差數(shù)列.
(1)求;
(2)求第三項(xiàng)的二項(xiàng)式系數(shù)及展開式中的系數(shù);
(3)求展開式中系數(shù)的絕對值最大的項(xiàng).
【答案】(1)(2);(3)或
【解析】
(1)根據(jù)等差數(shù)列的知識(shí)及二項(xiàng)式系數(shù)的性質(zhì),列式求得n ;
(2)直接求解第三項(xiàng)的二項(xiàng)式系數(shù),然后寫出二項(xiàng)展開式的通項(xiàng),由的指數(shù)為求得 ,則展開式中的系數(shù)可求;
(3)根據(jù)二項(xiàng)式系數(shù)的性質(zhì),求得二項(xiàng)式系數(shù)最大的項(xiàng).
(1)二項(xiàng)式的展開式中,前三項(xiàng)系數(shù)的絕對值成等差數(shù)列,則
,解得:(舍去)或;
(2)由(1)可得:,
所以展開式中第三項(xiàng)的二項(xiàng)式系數(shù)為,
展開式的通項(xiàng)為,
令,解得,
所以展開式中的系數(shù)為;
(3)由(2)可得:,解得,
所以展開式中系數(shù)的絕對值最大的項(xiàng)為
或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)若與平面所成角為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,
且,
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項(xiàng)公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,側(cè)面為正三角形,側(cè)面底面,、分別為棱、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在棱上是否存在一點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)存在兩個(gè)極值,求的取值范圍;并證明:函數(shù)存在唯一零點(diǎn).
(2)若存在實(shí)數(shù),,使,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)為左焦點(diǎn),過點(diǎn)作軸的垂線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)在圓上是否存在一點(diǎn),使得在點(diǎn)處的切線與橢圓相交于、兩點(diǎn)滿足?若存在,求的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)定點(diǎn),動(dòng)點(diǎn)滿足.設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的斜率;
(3)若, 是直線上的動(dòng)點(diǎn),過作曲線的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com