設m=
1
-1
1-x2
dx,若將函數(shù)f(x)=sin(ωx+φ)的圖象向左平移m個單位后所得圖象與原圖象重合,則ω的值不可能為(  )
A、4B、6C、8D、12
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)積分的幾何意義求出m的值,然后根據(jù)輔助角公式將函數(shù)f(x)進行化簡,求出函數(shù)的周期即可得到結論.
解答: 解:
1
-1
1-x2
dx的幾何意義為半徑為1的半圓的面積,即m=
1
2
×π×12
=
π
2
,
若函數(shù)f(x)的圖象向左平移
π
2
個單位,若所得的圖象與原圖象重合,
則函數(shù)的周期T,滿足nT=
π
2

ω
•n=
π
2
,
則ω=4n,n∈Z,即ω是4的倍數(shù),
故ω的值不可能等于6,
故選:B
點評:本題主要考查三角函數(shù)的圖象和性質(zhì)以及積分的應用,根據(jù)條件確定函數(shù)的周期關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,m),向量
b
=(m,2).若
a
b
,則實數(shù)m等于( 。
A、-
2
B、
2
C、±
2
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的左、右焦點分別為F1,F(xiàn)2,左、右頂點將線段F1F2三等分,則該雙曲線的漸近線方程為(  )
A、y=±2
2
x
B、y=±2x
C、y=±
2
2
x
D、y=±x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|2x+1<3},B={x|-2<x<2},則A∩B等于( 。
A、{x|-2<x<1}
B、{x|1<x<2}
C、{x|x>-3}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x
x2-3x+2
的單調(diào)遞增區(qū)間是( 。
A、(-
2
,1)∪(1,
2
B、(-
2
,1)及(1,
2
C、(-
2
,
2
D、(-2,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程
1-x2
-x-a=0有兩個不同的實數(shù)解,則實數(shù)a的取值范圍為(  )
A、(-
2
2
B、[-
2
,
2
]
C、[-1,
2
D、[1,
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知六個點A1(x1,1),B1(x2,-1),A2(x3,1),B2(x4,-1),A3(x5,1),B3(x6,-1),其中(x1<x2<x3<x4<x5<x6,x6-x1=5π)都在函數(shù)f(x)=cos(
π
2
+x)的圖象C上,如果這六點中不同的兩點的連線中點仍在曲線C上,則稱此兩點為“好點組”(兩點不計順序),則上述六點中好點組的個數(shù)為( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足
x+y-2≥0
kx-y+2≥0
y≥0
且z=y-x的最小值為-2,則k的值為( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
16
+
y2
4
=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值與最小值;
(2)設過定點M(0,4)的直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案