16.化簡(jiǎn):$\sqrt{5+2\sqrt{6}}$+$\sqrt{3-2\sqrt{2}}$+$\root{3}{(1-\sqrt{3})^{3}}$-$\root{4}{(1-\sqrt{2})^{4}}$.

分析 直接利用平方和公式以及平方差公式以及根式的身份證求解即可.

解答 解:$\sqrt{5+2\sqrt{6}}$+$\sqrt{3-2\sqrt{2}}$+$\root{3}{(1-\sqrt{3})^{3}}$-$\root{4}{(1-\sqrt{2})^{4}}$
=$\sqrt{(\sqrt{2}+\sqrt{3})^{2}}$+$\sqrt{{(\sqrt{2}-1)}^{2}}$+1-$\sqrt{3}$-$\sqrt{2}+1$
=$\sqrt{2}+\sqrt{3}+\sqrt{2}-1$+1$-\sqrt{3}-\sqrt{2}+1$
=$\sqrt{2}+1$.

點(diǎn)評(píng) 本題考查根式的運(yùn)算,平方和與平方差公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列數(shù)列是等比數(shù)列的是( 。
A.1,1,1,1,…B.…0,0,0,0,C.0,12,14,18,…D.-1,-1,1,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算下列各式:
(1)$(\frac{36}{49})^{\frac{1}{2}}$;
(2)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$;
(3)${a}^{\frac{1}{2}}•{a}^{\frac{1}{4}}$$•{a}^{-\frac{1}{8}}$;
(4)2${x}^{-\frac{1}{3}}$($\frac{1}{2}$${x}^{\frac{1}{3}}$-2${x}^{-\frac{2}{3}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知:α、β為△ABC的內(nèi)角且cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{2}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\frac{ax+2}{x+2}$(a為常數(shù))在(-2,2)內(nèi)為增函數(shù),則實(shí)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若log${\;}_{\sqrt{3}}$2=a,則log123=$\frac{1}{1+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義域?yàn)镽的奇函數(shù)f(x)滿足:當(dāng)x∈(0,+∞)時(shí),f(x)=x(x+2).
(1)求f(x)的解析式,并討論f(x)的單調(diào)性;
(2)若實(shí)數(shù)x滿足f(x2-bx)<f($\frac{x-b}{2}$),其中常數(shù)b∈R,試求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知a=3,求$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知z為復(fù)數(shù),$\overline{z}$為z的共軛復(fù)數(shù),且z$•\overline{z}$i+2=2z,求z.

查看答案和解析>>

同步練習(xí)冊(cè)答案