精英家教網 > 高中數學 > 題目詳情
如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,側棱A1A⊥底面ABCD,E為A1A的中點.
求證:A1C∥平面EBD.

【答案】分析:利用三角形中位線的性質,可知線線平行,從而可證線面平行.
解答:證明:連接AC,設AC∩BD=F,連接EF,
因為底面ABCD是正方形,所以F為AC的中點.
又E為A1A的中點,所以EF是△A1AC的中位線,所以EF∥A1C.
因為EF?平面EBD,A1C?平面EBD,所以A1C∥平面EBD.
點評:本題考查直線與平面平行的判定定理,考查空間圖形的位置關系,正確運用直線與平面平行的判定定理是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側棱AA1=2.
(Ⅰ)求證:C1D∥平面ABB1A1;
(Ⅱ)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側棱與底面邊長均為2a,且∠A1AD=∠A1AB=60°,則側棱AA1和截面B1D1DB的距離是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側棱A1A=2,
(Ⅰ)證明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一點P,使得
AP
PA1
,當二面角A-B1C1-P的大小為300時,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泉州模擬)如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)從下列①②③三個條件中選擇一個做為AC⊥BD1的充分條件,并給予證明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四邊形.
(Ⅱ)設四棱柱ABCD-A1B1C1D1的所有棱長都為1,且∠BAD為銳角,求平面BDD1與平面BC1D1所成銳二面角θ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•天津)如圖,四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點.
(Ⅰ)證明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
,求線段AM的長.

查看答案和解析>>

同步練習冊答案