【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,且滿足

(1)求橢圓的方程;

(2)設(shè)傾斜角為的直線交于,兩點(diǎn),記的面積為,求取最大值時(shí)直線的方程.

【答案】(1);(2).

【解析】

(1)根據(jù)點(diǎn)在橢圓上,且滿足結(jié)合性質(zhì) ,列出關(guān)于 、的方程組,求出 、,即可得橢圓的方程;(2)設(shè)直線的方程為.

聯(lián)立消去,整理得,由韋達(dá)定理,利用弦長(zhǎng)公式、點(diǎn)到直線距離公式以及三角形的面積公式求得,利用基本不等式可得結(jié)果.

(1)設(shè),,根據(jù)題意的,

,,

所以,解得

因?yàn)?/span>,①

又因?yàn)辄c(diǎn)在橢圓上,所以,②

聯(lián)立①②,解得,

所以橢圓的方程為.

(2)因?yàn)橹本的傾斜角為45°,所以設(shè)直線的方程為.

聯(lián)立消去,整理得

因?yàn)橹本交于兩點(diǎn),

所以,解得,.

設(shè),,則

,,

從而,.

又因?yàn)辄c(diǎn)到直線的距離,

所以,

當(dāng)且僅當(dāng),即,即時(shí)取等號(hào).

所以的面積的最大值為,

此時(shí)直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

,參考數(shù)值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列,滿足下列條件:①,;②當(dāng)時(shí),滿足:時(shí),,;時(shí),.

1)若,,求的值,并猜想數(shù)列可能的通項(xiàng)公式(不需證明);

2)若,是滿足的最大整數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面幾種說(shuō)法:

①相等向量的坐標(biāo)相同;

②若向量滿足,則

③若,,是不共線的四點(diǎn),則四邊形為平行四邊形的充要條件;

的充要條件是.

其中正確說(shuō)法的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對(duì)該單位120名職工進(jìn)行一次業(yè)務(wù)技能測(cè)試,測(cè)試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測(cè)試結(jié)果,將它們編號(hào)后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測(cè)試合格,“×”表示測(cè)試不合格).

表1:

編號(hào)\測(cè)試項(xiàng)目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項(xiàng)測(cè)試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.

①設(shè)抽取的這10名職工中,每名職工測(cè)試合格的項(xiàng)數(shù)為,根據(jù)上面的測(cè)試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;

②假設(shè)各名職工的各項(xiàng)測(cè)試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測(cè)試中,測(cè)試難度的計(jì)算公式為,其中為第項(xiàng)測(cè)試難度,為第項(xiàng)合格的人數(shù),為參加測(cè)試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測(cè)試合格人數(shù)及相應(yīng)的實(shí)測(cè)難度如下表(表2):

表2:

測(cè)試項(xiàng)目

1

2

3

4

5

實(shí)測(cè)合格人數(shù)

8

8

7

7

2

定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測(cè)難度,為第項(xiàng)的預(yù)測(cè)難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)測(cè)合理,否則為不合理,測(cè)試前,預(yù)估了每個(gè)預(yù)測(cè)項(xiàng)目的難度,如下表(表3)所示:

表3:

測(cè)試項(xiàng)目

1

2

3

4

5

預(yù)測(cè)前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意實(shí)數(shù),給出下列命題:①的充要條件;②是無(wú)理數(shù)是無(wú)理數(shù)的充要條件;③的充分條件;④的必要條件;其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:

①函數(shù)是奇函數(shù)且在定義域上是單調(diào)遞增函數(shù);

②函數(shù)有兩個(gè)零點(diǎn),則;

③函數(shù),則的解集為;

④函數(shù)的單調(diào)遞減區(qū)間為.

其中正確命題的序號(hào)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是邊長(zhǎng)為2的正方形,ADPM是梯形,AMDP,分別為的中點(diǎn).

(I)證明:平面;

(II) 求三棱錐的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案