【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

,參考數(shù)值:.

【答案】(1) (2)19.65頓

【解析】試題分析:(1) 根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個數(shù)據(jù),代入求系數(shù)的公式,再計算,求出的值即可得出線性回歸方程;(2)利用回歸方程,把代入線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低標準煤的數(shù)量.

試題解析:(1)由對照數(shù)據(jù),計算得,,,

,,故.

(2)將代入方程,得噸.

預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低(噸)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)經(jīng)過橢圓的右焦點的直線與橢圓交于、兩點,、分別為橢圓的左、右頂點,記的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關(guān)于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;

(2)當時,若點平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左焦點為,上頂點為,長軸長為,為直線上的動點,,.當時,重合.

(1)若橢圓的方程;

(2)若直線交橢圓,兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點,直線和曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,是棱上的動點,的中點.

(1)當中點時,求證:平面;

(2)在棱上是否存在點,使得平面與平面所成銳二面角為,若存在,求的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,的中點,平行于,平行于面.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均為棱(不包括端點)上一動點,的中點.

(Ⅰ)若,求的長;

(Ⅱ)當在棱(不包括端點)上運動時,求平面與平面的夾角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當時,求的單調(diào)區(qū)間;

(2)若上的最大值為1,求的值.

查看答案和解析>>

同步練習冊答案