已知銳角A是△ABC的一個(gè)內(nèi)角,a,b,c是三角形中各角的對(duì)應(yīng)邊,若sin2A-cos2A=
1
2
,則b+c與2a的大小關(guān)系為
 
.(填<或>或≤或≥或=)
考點(diǎn):正弦定理
專題:解三角形
分析:已知等式利用二倍角的余弦函數(shù)公式化簡(jiǎn),整理求出cos2A的值,確定出A的度數(shù),設(shè)B=60°+x,0≤x<60°,則有C=60°-x,
1
2
<cosx≤1,表示出sinB+sinC,求出2sinA的值,即可做出判斷.
解答: 解:∵銳角△ABC中,sin2A-cos2A=-cos2A=
1
2
,即cos2A=-
1
2

∴2A=120°,即A=60°,
設(shè)B=60°+x,0≤x<60°,則有C=60°-x,
1
2
<cosx≤1,
∵sinB+sinC=sin(60°+x)+sin(60°-x)=2sin60°cosx=
3
cosx,2sinA=2×
3
2
=
3

∴sinB+sinC≤2sinA,
由正弦定理化簡(jiǎn)得:b+c≤2a,
故答案為:≤
點(diǎn)評(píng):此題考查了正弦定理,二倍角的余弦函數(shù)公式,以及和差化積公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)某同學(xué)的6次數(shù)學(xué)測(cè)試成績(jī)(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,給出關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的以下說(shuō)法:
①中位數(shù)為84;   
②眾數(shù)為85;
③平均數(shù)為85;   
④極差為12.
其中,正確說(shuō)法的序號(hào)是(  )
A、①②B、③④C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn).
(Ⅰ)求證:AE⊥平面PAD;
(Ⅱ)若AB=2,異面直線PB與CD所成角為60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把一枚硬幣任意拋擲三次,事件A=“至少一次出現(xiàn)反面”,事件B=“恰有一次出現(xiàn)正面”,則P(B|A)=( 。
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log 
1
2
3,b=(
1
3
0.2,c=2 
1
3
,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上滿足f(x)=2f(-x)-x2則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是(  )
A、y=x
B、y=2x-1
C、y=3x-2
D、y=-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2

(2)log25
1
2
•log45-log
1
3
3-log24+5log52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A=60°,3b=2c,S△ABC=
3
3
2

(Ⅰ)求b的值;
(Ⅱ)求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=3 x2-3x+2,x∈[-1,2]的值域是( 。
A、R
B、[
1
43
,729]
C、[9,243]
D、[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案