設(shè)a=log 
1
2
3,b=(
1
3
0.2,c=2 
1
3
,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b
考點(diǎn):對(duì)數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.
解答: 解:∵a=log 
1
2
3<0,0<b=(
1
3
0.2<1,c=2 
1
3
>1,
∴a<b<c.
故選:A.
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),則
a1
2
+
a2
22
+…+
a2013
22013
的值為(  )
A、-1B、0C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與函數(shù)g(x)=log 
1
2
x的圖象關(guān)于直線y=x對(duì)稱,則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的部分圖象如圖所示,將y=f(x)的圖象向右平移
π
4
個(gè)單位后得到函數(shù)y=g(x)的圖象.則函數(shù)y=g(x)的單調(diào)增區(qū)間為( 。
A、[kπ-
π
6
,kπ+
π
3
],k∈Z
B、[kπ+
π
6
,kπ+
π
2
],k∈Z
C、[kπ-
π
6
,kπ+
3
],k∈Z
D、[kπ+
π
6
,kπ+
6
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)有有教師300人,其中高級(jí)、中級(jí)、初級(jí)職稱教師人數(shù)之比為1:3:2,現(xiàn)在準(zhǔn)備用分層抽樣法抽取72人的工資作樣本,那么應(yīng)從初級(jí)教師中抽(  )個(gè)人的工資.
A、12B、18.C、24D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角A是△ABC的一個(gè)內(nèi)角,a,b,c是三角形中各角的對(duì)應(yīng)邊,若sin2A-cos2A=
1
2
,則b+c與2a的大小關(guān)系為
 
.(填<或>或≤或≥或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2
1+x2
,
(1)證明:f(x)+f(
1
x
)=1;
(2)計(jì)算f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
,且此函數(shù)的圖象過點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值,并判斷f(x)的奇偶性;
(2)判斷f(x)在[1,2]上的單調(diào)性,并用單調(diào)性定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的二次函數(shù)f(x)=-x2+bx+c對(duì)一切實(shí)數(shù)x都有:f(2+x)=f(2-x)恒成立.
(1)求實(shí)數(shù)b的值;
(2)當(dāng)a∈R時(shí),判斷f(
5
4
)與f(-a2-a+1)的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案