16.向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),則$\overrightarrow{a}$-2$\overrightarrow$的模等于$\sqrt{17}$.

分析 求出$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo),帶入模的公式計(jì)算即可.

解答 解:∵$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),
∴$\overrightarrow{a}$-2$\overrightarrow$=(2,3)-(-2,4)=(4,-1),
故$\overrightarrow{a}$-2$\overrightarrow$的模是:$\sqrt{16+1}$=$\sqrt{17}$,
故答案為:$\sqrt{17}$.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算與模長(zhǎng)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,在棱長(zhǎng)均為2的正三棱柱ABC-A1B1C1中,點(diǎn)M是側(cè)棱AA1的中點(diǎn),點(diǎn)P、Q分別是側(cè)面BCC1B1、底面ABC內(nèi)的動(dòng)點(diǎn),且A1P∥平面BCM,PQ⊥平面BCM,則點(diǎn)Q的軌跡的長(zhǎng)度為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分別為BC和AA1的中點(diǎn),P為側(cè)棱BB1上的動(dòng)點(diǎn).
(Ⅰ)求證:平面APM⊥平面BB1C1C;
(Ⅱ)若P為線段BB1的中點(diǎn),求證:CN∥平面AMP;
(Ⅲ)試判斷直線BC1與PA能否垂直.若能垂直,求出PB的值;若不能垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)z滿足|z|=1(i為虛數(shù)單位),則|z-2i|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2(x>0),g(x)=bx,其中a,b是實(shí)數(shù).
(1)若$a=-\frac{1}{2}$,求f(x)的最大值;
(2)若b=2,且直線$y=g(x)-\frac{3}{2}$是曲線y=f(x)的一條切線,求實(shí)數(shù)a的值;
(3)若a<0,且$b-a=\frac{1}{2}$,函數(shù)h(x)=f(x)-g(2x)有且只有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2-(2a-1)x-lnx(a為常數(shù),a≠1).
(Ⅰ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)y=f(x)圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過(guò)點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.判斷曲線C在點(diǎn)N處的切線是否平行于直線AB?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$內(nèi)的任意一點(diǎn),當(dāng)該區(qū)域的面積為2時(shí),z=x+2y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)與函數(shù)y=x相等的是( 。
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若x是方程${2^x}-\frac{3}{{{2^{x-1}}}}=5$的解,化簡(jiǎn):|x-3|+x.

查看答案和解析>>

同步練習(xí)冊(cè)答案