【題目】已知向量 =(ex , lnx+k), =(1,f(x)), ∥ (k為常數(shù),e是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實數(shù)),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數(shù)a的取值范圍.
【答案】
(1)解:由已知可得:f(x)= ,
∴ ,
由已知, ,
∴k=1
∴F(x)=xexf'(x)= ,
所以F'(x)=﹣lnx﹣2
由 ,
由
∴F(x)的增區(qū)間為 ,減區(qū)間為
(2)解:∵對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),
∴g(x)max<F(x)max…(6分)
由(I)知,當 時,F(xiàn)(x)取得最大值 .
對于g(x)=﹣x2+2ax,其對稱軸為x=a
當0<a≤1時, ,
∴ ,從而0<a≤1
當a>1時,g(x)max=g(1)=2a﹣1,
∴ ,從而
綜上可知:
【解析】(1)利用向量平行的條件求出函數(shù)y=f(x),再求出此函數(shù)的導函數(shù),函數(shù)在點(1,f(1))處的切線與x軸平行,說明f′(1)=0,則k值可求;從而得出F(x)的解析式,求出函數(shù)F(x)的定義域,然后讓導函數(shù)等于0求出極值點,借助于導函數(shù)在各區(qū)間內(nèi)的符號求函數(shù)F(x)的單調(diào)區(qū)間.(2)對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),等價于g(x)max<F(x)max , 再求得F(x)取得最大值;利用二次函數(shù)的圖象,對a進行分類討論,得出g(x)在[0,1]上的最大值,由g(x)在[0,1]上的最大值小于F(x)max得a的范圍,結合分類時a的范圍得a的取值范圍.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,各側(cè)面是全等的等腰三角形,腰長為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點M,N,且四邊形AMND的周長最小,點S從A出發(fā)依次沿四邊形AM,MN,ND運動至點D,記點S行進的路程為x,棱錐S﹣ABCD的體積為V(x),則函數(shù)V(x)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結論正確的是( )
A.函數(shù)f(x)在區(qū)間[ ]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關于直線x= 對稱
D.將函數(shù)f(x)的圖象向右平移 個單位,再向上平移1個單位,得到函數(shù)g(x)的圖象
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動這個正方體,則水面在容器中的形狀可以是:
①三角形;②矩形;③正方形;④正六邊形.
其中正確的結論是(把你認為正確的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為,如果存在正實數(shù),使得對任意,都有,且恒成立,則稱函數(shù)為上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時, ,若為上的“2017的型增函數(shù)”,則實數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點,PA⊥平面ABC,E是PC的中點, ,PA=AC=1.
(1)求證:AE⊥PB;
(2)求二面角A﹣PB﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個最高點的坐標為( , ),由此點到相鄰最低點間的曲線與x軸交于點( π,0),φ∈(﹣ , ).
(1)求這條曲線的函數(shù)解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=4an﹣3(n∈N*).
(Ⅰ)證明:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F(xiàn)分別是CC1 , BC的中點.
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com