(2013•沈陽二模)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|.
(1)解不等式:1≤f(x)+f(x-1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤f(a).
分析:(1)利用絕對值不等式的性質(zhì)可得f(x)+f(x-1)=|x-1|+|x-2|≥1,故只須解不等式f(x)+f(x-1)≤2即可,通過對x分x≤1,1<x≤2,x>2三類討論,去掉絕對值符號,解之即可;
(2)當a>0時,求得f(ax)-af(x)=|ax-1|-|a-ax|,利用絕對值不等式的性質(zhì)可得|ax-1|-|a-ax|≤|ax-1+a-ax|=f(a),從而可證結(jié)論.
解答:解:(1)由題f(x)+f(x-1)=|x-1|+|x-2|≥|x-1+2-x|=1.
因此只須解不等式f(x)+f(x-1)≤2.…(2分)
當x≤1時,原不式等價于-2x+3≤2,即
1
2
≤x≤1.
當1<x≤2時,原不式等價于1≤2,即1<x≤2.
當x>2時,原不式等價于2x-3≤2,即2<x≤
5
2

綜上,原不等式的解集為{x|
1
2
≤x≤
5
2
}.…(5分)
(2)由題f(ax)-af(x)=|ax-1|-a|x-1|.
當a>0時,f(ax)-af(x)
=|ax-1|-|ax-a|
=|ax-1|-|a-ax|
≤|ax-1+a-ax|
=|a-1|
=f(a).…(10分)
點評:本題考查:絕對值不等式的解法,掌握雙絕對值不等式的性質(zhì),通過分類討論去掉絕對值符號是解題的關(guān)鍵,考查轉(zhuǎn)化思想與分類討論思想的綜合應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)復數(shù)z=1-
1+i
i3
(i為虛數(shù)單位)對應的點在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)已知非空集合A,B,全集U=A∪B,集合M=A∩B,集合N=(CUB)∩(CUA),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)執(zhí)行如圖所示的程序框圖,若輸入a=2,則輸出的結(jié)果為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)橢圓C:
x2
4
+y2=1
與動直線l:2mx-2y-2m+1=0(m∈R),則直線l與橢圓C交點的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)“a=1”是“(1+ax)6的展開式的各項系數(shù)之和為64”的( 。

查看答案和解析>>

同步練習冊答案