【題目】設(shè)全集U=R,集合A={x|x2﹣3x≥0},B={x∈N|x≤3},則(UA)∩B等于(
A.
B.{0,1}
C.{1,2}
D.{1,2,3}

【答案】C
【解析】解:全集U=R,集合A={x|x2﹣3x≥0}={x|x≤0或x≥3}, B={x∈N|x≤3}={0,1,2,3},
UA={x|0<x<3},
∴(UA)∩B={1,2}.
故選:C.
解不等式得集合A,根據(jù)集合的定義求出UA以及(UA)∩B即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},則UA=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=1nx+2x﹣6,用二分法求方程lnx+2x﹣6=0在區(qū)間(2,3)內(nèi)近似解的過程中,得f(2.5)<0,f(3)>0,f(2.75)>0,f(2.625)>0,則方程的根落在區(qū)間( 。
A.(2.5,3)
B.(2.5,2.75)
C.(2.625,2.75)
D.(2.5,2.625)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α、β是兩個不同的平面,m、n是兩條不重合的直線,則下列命題中正確的是( 。
A.若m∥α,α∩β=n,則m∥n
B.若m⊥α,n⊥β,α⊥β,則m⊥n
C.若α⊥β,α∩β=n,m⊥n,則m⊥β
D.若m⊥α,m⊥n,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當x∈[﹣3,﹣1)時,f(x)=﹣(x+2)2 , 當x∈[﹣1,3)時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2017)的值為(
A.336
B.337
C.1676
D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若y=ex+sinx,則y′=(
A.xex1+sinx
B.ex﹣sinx
C.ex+cosx
D.y=ex﹣cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接中共十九大,某校舉辦了“祖國,你好”詩歌朗誦比賽.該校高三年級準備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名學(xué)生中至少有1人參加,且當這 3名學(xué)生都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為(
A.720
B.768
C.810
D.816

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 , …,得到1+3+…+(2n﹣1)=n2用的是 (
A.特殊推理
B.演繹推理
C.類比推理
D.歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:
命題p:若函數(shù)f(x)=x2+|x﹣a|是偶函數(shù),則a=0.
命題q:m∈(0,+∞),關(guān)于x的方程mx2﹣2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中為真命題的是(
A.②③
B.②④
C.③④
D.①④

查看答案和解析>>

同步練習(xí)冊答案