【題目】如圖為一個正方體與一個半球構(gòu)成的組合體,半球的底面圓與該正方體的上底面的四邊相切, 與正方形的中心重合.將此組合體重新置于一個球中(球未畫出),使該正方體的下底面的頂點均落在球的表面上,半球與球內(nèi)切,設(shè)切點為,若正四棱錐的表面積為,則球的表面積為( )

A.B.C.D.

【答案】B

【解析】

設(shè)球,半球的半徑分別為,然后用含的式子表示出正方體的棱長與四棱錐的高和四棱錐側(cè)面的高,從而由四棱錐的表面積求出,進而建立關(guān)于的方程,求得的值,最后利用球的表面積公式求解即可.

如圖,

設(shè)球,半球的半徑分別為, 由題意知正方體的棱長為,四棱錐為正四棱錐.設(shè)該正方體的底面的中心為,連接,則四棱錐的高,其各側(cè)面的高為.由題意得,得.易知球的球心在線段上,連接,則在中,

于是由勾股定理,得

解得,所以球的表面積,

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,且兩個焦點的坐標分別為, .

(1)求的方程;

(2)若, , 上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是定義域為的函數(shù)的導函數(shù),,,則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=Acos(ωxφ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標不變,橫坐標向右平移個單位長度后得到函數(shù)f(x)的圖象.求:

(1)函數(shù)f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1的棱長為2,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-ABC的三視圖的面積之和最大值為( )

A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦點為(,0),(0),且橢圓C過點M(4,1),直線l不過點M,且與橢圓交于不同的兩點A,B.

(1)求橢圓C的標準方程;

(2)求證:直線MA,MB與x軸總圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.

(1)求橢圓的標準方程;

(2)是否存在實數(shù)使以線段為直徑的圓經(jīng)過點,若存在,求出實數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(元)表示為長度的函數(shù);

(2)當取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

同步練習冊答案