【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若滿足條件:存在區(qū)間,使在上的值域?yàn)?/span>,則稱為“不動(dòng)函數(shù)”.
(1)求證:函數(shù)是“不動(dòng)函數(shù)”;
(2)若函數(shù)是“不動(dòng)函數(shù)”,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)可判斷在上單調(diào)遞增,取,得出;取,得出.即在區(qū)間上的值域?yàn)?/span>,即得出是“不動(dòng)函數(shù)”;
(2)可判斷在上單調(diào)遞增,根據(jù)是“不動(dòng)函數(shù)”可得出,存在使得函數(shù)在區(qū)間上的值域?yàn)?/span>.從而得出方程在上至少有兩個(gè)不相等的實(shí)數(shù)根.即在上至少有2個(gè)解,等價(jià)于和的圖像至少有2個(gè)交點(diǎn),研究函數(shù)圖像即可求出的取值范圍.
(1)要證:存在區(qū)間使得在上的值域?yàn)?/span>,
又由于在是一個(gè)單調(diào)遞増的函數(shù),
故只需證存在實(shí)數(shù),滿足,且有
觀察得,,
即存在,符合題意,
故函數(shù)是“不動(dòng)函數(shù)”.
(2)由題,定義域?yàn)?/span>,即存在實(shí)數(shù),滿足,使得在區(qū)間上的值域?yàn)?/span>,
由于在定義域上單調(diào)遞増,從而有,
該方程組等價(jià)于方程在有至少2個(gè)解,
即在上至少有2個(gè)解,
即和的圖像至少有2個(gè)交點(diǎn),
記,則,且,從而有,
記,配方得,
又,作出的圖像可知,時(shí)有兩個(gè)交點(diǎn),
綜上,的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時(shí)間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了30名男生、20名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如下表所示:
平均每天使用手機(jī)超過3小時(shí) | 平均每天使用手機(jī)不超過3小時(shí) | 合計(jì) | |
男生 | 25 | 5 | 30 |
女生 | 9 | 11 | 20 |
合計(jì) | 34 | 16 | 50 |
(1)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生使用手機(jī)的時(shí)間長短與性別有關(guān)?
(2)在這20名女生中,調(diào)查小組發(fā)現(xiàn)共有15人使用國產(chǎn)手機(jī),在這15人中,平均每天使用手機(jī)不超過3小時(shí)的共有9人.從平均每天使用手機(jī)超過3小時(shí)的女生中任意選取3人,求這3人中使用非國產(chǎn)手機(jī)的人數(shù)X的分布列和數(shù)學(xué)期望.
參考公式:
P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , , 兩兩垂直, ,且, .
(1)求二面角的余弦值;
(2)已知點(diǎn)為線段上異于的點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y.
(1)求拋物線在點(diǎn)P(2,1)處的切線方程;
(2)若不過原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OA⊥OB,|OA|=|OB|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一研究性學(xué)習(xí)小組對春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了4月1日至4月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差攝氏度 | 8 | 12 | 13 | 11 | 10 |
發(fā)芽數(shù)顆 | 18 | 26 | 30 | 25 | 20 |
該學(xué)習(xí)組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是4月1日與4月5日這2組數(shù)據(jù)做檢驗(yàn),請根據(jù)4月2日至4月4日這3組數(shù)據(jù)求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
參考公式和數(shù)據(jù):,;,>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面,,為的中點(diǎn),是線段上的一動(dòng)點(diǎn).
(1)當(dāng)是線段的中點(diǎn)時(shí),證明:平面;
(2)當(dāng)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校微信公眾號收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:
(1)求這100位留言者年齡的平均數(shù)和中位數(shù);
(2)學(xué)校從參加調(diào)查的年齡在和的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗(yàn)交流會,贈(zèng)與年齡在的留言者每人一部價(jià)值1000元的手機(jī),年齡在的留言者每人一套價(jià)值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價(jià)值超過2300元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省為了確定合理的階梯電價(jià)分檔方案,對全省居民用量進(jìn)行了一次抽樣調(diào)查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:
(1)若要求80%的居民能按基本檔的電量收費(fèi),則基本檔的月用電量應(yīng)定為多少度?
(2)由頻率分布直方圖可估計(jì),居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)設(shè), , ,求函數(shù)的最小值;
(3)對(2)中的,若不等式對于任意的時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com