(2013•黃埔區(qū)一模)若矩陣
a1a2a3a4
b1b2b3b4
滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為(  )
分析:根據(jù)分步計數(shù)原理,先從集合{1,2,3,4}中選取2個數(shù),再將它們插在矩陣四列的某2個位置,最后將剩余的兩個數(shù)插在余下的2個位置,這樣共有C42A42×2=144種不同的排列方法,由此即可得到滿足條件的不同矩陣的個數(shù).
解答:解:按以下步驟進(jìn)行排列
①從集合{1,2,3,4}中選取2個數(shù),總共有C42=6種方法;
②將選取的兩個數(shù)插在第一列、第二列、第三列或第四列的2個位置,
因為上下對應(yīng)的數(shù)字相同,所以總共有A42=12種方法;
③將剩余的兩個數(shù)插在余下的2個位置,共2種方法
綜上,可得滿足條件的不同排列共有C42A42×2=144個
因此,滿足條件的不同矩陣的個數(shù)為144個
故選:C
點評:本題給出2行、4列的矩陣,求滿足條件的不同矩陣的個數(shù),著重考查了排列與組合的計算方法和矩陣基本概念等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知tanα=
1
2
,tan(β-α)=-
1
3
,則tan(β-2α)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知命題“若f(x)=m2x2,g(x)=mx2-2m,則集合{x|f(x)<g(x),
12
≤x≤1}=∅
”是假命題,則實數(shù)m的取值范圍是
(-7,0)
(-7,0)

查看答案和解析>>

同步練習(xí)冊答案