在極坐標(biāo)系中,已知點(diǎn),,求以為直徑的圓的極坐標(biāo)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(I)判斷直線與圓C的位置關(guān)系;
(Ⅱ)若點(diǎn)P(x,y)在圓C上,求x +y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù),)。以為極點(diǎn),軸正半軸為極軸,并取相同的單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為。寫(xiě)出圓心的極坐標(biāo),并求當(dāng)為何值時(shí),圓上的點(diǎn)到直線的最大距離為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分)
在直角坐標(biāo)系xoy中,以o為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,M,N分別為C與x軸,y軸的交點(diǎn)
(1)寫(xiě)出C的直角坐標(biāo)方程,并求出M,N的極坐標(biāo);
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓錐曲線C: 為參數(shù))和定點(diǎn),是此圓錐曲線的左、右焦點(diǎn)。
(1)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過(guò)點(diǎn),且與直線垂直的直線交此圓錐曲線于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,O為極點(diǎn),已知圓C的圓心為,半徑r=1,P在圓C上運(yùn)動(dòng)。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長(zhǎng)度單位,且以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸)中,若Q為線段OP的中點(diǎn),求點(diǎn)Q軌跡的直角坐標(biāo)方程。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長(zhǎng)度單位,且以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸)
中,若Q為線段OP的中點(diǎn),求點(diǎn)Q軌跡的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題9分)在極坐標(biāo)系中,過(guò)曲線外的一點(diǎn) (其中為銳角)作平行于的直線與曲線分別交于.
(1)寫(xiě)出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建系);
(2) 若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若一個(gè)直角三角形的一條直角邊為3 cm,斜邊上的高為2.4 cm,則這個(gè)直角三角形的面積為
A.7.2 cm2 | B.6 cm2 |
C.12 cm2 | D.24 cm2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com