(本小題滿分13分)
已知數(shù)列是等比數(shù)列數(shù)列是等差數(shù)列,

(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)比較大小,并證明你的結(jié)論。
解:
(I)
               ………………1分

     ………………2分
(II)   ………………2分
(III)   ………………2分
      ………………2分
        
當(dāng)n=19時(shí)     Pn=Qn       ………………1分
當(dāng)1n18時(shí)     Pn<Qn       ………………1分
當(dāng)n20時(shí)    Pn>Qn       ………………1分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在數(shù)列中,,且,則當(dāng)前n項(xiàng)和取最小值時(shí),n的取值為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,)。
(1)求,的值;
(2)設(shè),是否存在實(shí)數(shù),使數(shù)列為等差數(shù)列,若存在請求其通項(xiàng),若不存在請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分) 已知數(shù)列的首項(xiàng),,
(1)若,求證是等比數(shù)列并求出的通項(xiàng)公式;
(2)若對一切都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

..(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分。
設(shè)函數(shù),數(shù)列滿足。
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的等比數(shù)列,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=1,an=-SnSn-1 (n≥2),則Sn       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為進(jìn)一步保障和改善民生,國家“十二五”規(guī)劃綱要提出,“十二五”期間將提高住房
保障水平,使城鎮(zhèn)保障性信房覆蓋率達(dá)到20℅左右. 某城市2010年有商品房萬套,保障
性住房萬套(). 預(yù)計(jì)2011年新增商品房萬套,以后每年商品新增量是上一年新增
量的倍,問“十二五”期間(2011年~2015年)該城市保障性住房建設(shè)年均應(yīng)增加多少
萬套才能使覆蓋率達(dá)到?
,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{}的前n項(xiàng)和=n2,{}為等比數(shù)列,且=,(-)=
⑴求數(shù)列{}和{}的通項(xiàng)公式;
⑵求數(shù)列{}的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

=___________

查看答案和解析>>

同步練習(xí)冊答案