已知函數(shù)在上是增函數(shù),求a的取值范圍.
解析試題分析:(1)當(dāng)時,函數(shù)在上是增函數(shù)
函數(shù) 拋物線對稱軸
即
(2)當(dāng)時,函數(shù)在上是增函數(shù)
拋物線對稱軸
即
綜上所述a的取值范圍是
考點(diǎn):本題主要考查復(fù)合的手術(shù)刀性質(zhì),二次函數(shù)的圖象和性質(zhì)。
點(diǎn)評:對數(shù)函數(shù)的單調(diào)性,取決于底數(shù)與1 的大小比較。復(fù)合函數(shù)的單調(diào)性遵循“內(nèi)外層函數(shù),同增異減”。特別注意函數(shù)定義域,對數(shù)真數(shù)大于0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)滿足(+2)=(2-),且方程的兩實(shí)根的平方和為10,的圖象過點(diǎn)(0,3),
⑴求()的解析式.
⑵求在上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(I)求x為何值時,上取得最大值;
(II)設(shè)是單調(diào)遞增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)且時,恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),。
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)(i)設(shè)是的導(dǎo)函數(shù),證明:當(dāng)時,在上恰有一個使得;
(ii)求實(shí)數(shù)的取值范圍,使得對任意的,恒有成立。
注:為自然對數(shù)的底數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)是定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/99/1/1c9pj3.png" style="vertical-align:middle;" />的奇函數(shù),(1)求實(shí)數(shù)的值;(2)證明是上的單調(diào)函數(shù);(3)若對于任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,討論的單調(diào)性;
(Ⅱ)設(shè)時,若對任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com