設函數(shù)。
(1)求在點處的切線方程;
(2)求在區(qū)間的最大值與最小值。

(1)(2),

解析試題分析:解:(1)                         2
                               3

                           5
                           6
(2)
                          7



                                 11

                            13
考點:導數(shù)的幾何意義,函數(shù)的最值
點評:主要是考查導數(shù)的幾何意義求解切線方程,以及導數(shù)的符號判定單調(diào)性得到最值,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù),若不等式的解集為.(Ⅰ)求的值;(Ⅱ)若函數(shù)上的最小值為1,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中.
(1)當時,求在曲線上一點處的切線方程;
(2)求函數(shù)的極值點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的值;
(Ⅱ)在(Ⅰ)的條件下,若關于x的方程f(x)=x2-x+b在區(qū)間[1,e]上恰有一個實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知函數(shù),且任意的

(1)求、、的值;
(2)試猜想的解析式,并用數(shù)學歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求在點處的切線方程;
(Ⅱ)若存在,滿足成立,求的取值范圍;
(Ⅲ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(常數(shù))在處取得極大值M=0.
(Ⅰ)求的值;
(Ⅱ)當,方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(Ⅰ)若解不等式;
(Ⅱ)如果,,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案