【題目】十三五規(guī)劃確定了到2020年消除貧困的宏偉目標(biāo),打響了精準(zhǔn)扶貧的攻堅(jiān)戰(zhàn),為完成脫貧任務(wù),某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產(chǎn)某種型號(hào)醫(yī)療器械的月固定成本為20萬(wàn)元,每生產(chǎn)1千件需另投入5.4萬(wàn)元,設(shè)該公司一月內(nèi)生產(chǎn)該型號(hào)醫(yī)療器械x千件且能全部銷售完,每千件的銷售收入為萬(wàn)元,已知

1)請(qǐng)寫(xiě)出月利潤(rùn)y(萬(wàn)元)關(guān)于月產(chǎn)量x(千件)的函數(shù)解析式;

2)月產(chǎn)量為多少千件時(shí),該公司在這一型號(hào)醫(yī)療器械的生產(chǎn)中所獲月利潤(rùn)最大?并求出最大月利潤(rùn)(精確到0.1萬(wàn)元).

【答案】12)當(dāng)月產(chǎn)量為8千件時(shí),該公司在這一型號(hào)醫(yī)療器械的生產(chǎn)中所獲月利潤(rùn)最大,最大月利潤(rùn)為14.1萬(wàn)元.

【解析】

1)分別求出兩種情況所對(duì)應(yīng)的利潤(rùn)即可;

2)利用導(dǎo)數(shù)及基本不等式求出(1)中分段函數(shù)的最大值即可.

解:(1)當(dāng)時(shí),

當(dāng)時(shí),

2)①當(dāng)時(shí),

,可得時(shí),時(shí),,

時(shí),(萬(wàn)元);

②當(dāng)時(shí),(萬(wàn)元)(當(dāng)且僅當(dāng)時(shí)取等號(hào)).

綜合①②知,當(dāng)時(shí),y取最大值14.1,故當(dāng)月產(chǎn)量為8千件時(shí),該公司在這一型號(hào)醫(yī)療器械的生產(chǎn)中所獲月利潤(rùn)最大,最大月利潤(rùn)為14.1萬(wàn)元.

【點(diǎn)晴】

本題主要考查函數(shù)模型的應(yīng)用,考查學(xué)生數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中,為自然對(duì)數(shù)的底數(shù),).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.

(1)求證:;

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的單調(diào)遞減區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

3)若,正實(shí)數(shù), 滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)a為常數(shù),且)在處取得極值.

1)求實(shí)數(shù)a的值,并求的單調(diào)區(qū)間;

2)關(guān)于x的方程上恰有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;

3)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】法國(guó)有個(gè)名人叫做布萊爾·帕斯卡,他認(rèn)識(shí)兩個(gè)賭徒,這兩個(gè)賭徒向他提出一個(gè)問(wèn)題,他們說(shuō),他們下賭金之后,約定誰(shuí)先贏滿5局,誰(shuí)就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時(shí)間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨(dú)立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過(guò)程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;

2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓的一個(gè)頂點(diǎn)為,右焦點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過(guò)作兩條互相垂直的直線,且交橢圓兩點(diǎn),交橢圓、兩點(diǎn),求四邊形的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案