【題目】函數(shù)(a為常數(shù),且)在處取得極值.
(1)求實(shí)數(shù)a的值,并求的單調(diào)區(qū)間;
(2)關(guān)于x的方程在上恰有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(3)求證:當(dāng)時(shí),.
【答案】(1),的單調(diào)遞增區(qū)間是,函數(shù)的單調(diào)遞減區(qū)間是.(2).(3)見解析
【解析】
(1)首先寫出函數(shù)的定義域,之后求函數(shù)的導(dǎo)函數(shù),利用條件,得到等式,解出,代入導(dǎo)函數(shù)解析式,令,,求得函數(shù)的單調(diào)增、減區(qū)間;
(2)將的解析式代入方程,化簡(jiǎn)得,令,利用導(dǎo)數(shù)研究其單調(diào)性,結(jié)合題意,得到不等式組,求得結(jié)果;
(3)結(jié)合(1),得到,進(jìn)一步得到成立,對(duì)依次取值,累加得到結(jié)果.
(1),,由題意得,,
得,
當(dāng)時(shí),,
令,得,
令,得,
∴函數(shù)的單調(diào)遞增區(qū)間是,
函數(shù)的單調(diào)遞減區(qū)間是.
(2)關(guān)于x的方程,
化簡(jiǎn)為,
令,
,
令,解得或1,
令,得,
函數(shù)在上單調(diào)遞增,
關(guān)于x的方程在上恰有1個(gè)實(shí)數(shù)根,
則只需
得.
(3)由(1)知,當(dāng)時(shí),,即,
當(dāng)時(shí),令,則成立,
即成立
將n依次取1,2,3,4,5,…………,
可得,
,
……
,
,
累加求和得:,
即當(dāng)時(shí),成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
求a,b的值;
2若當(dāng)時(shí),關(guān)于x的不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有,,…,這5個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(全部比賽過程中任何一隊(duì)都要分別與其他各隊(duì)比賽一場(chǎng)且只比賽一場(chǎng)).當(dāng)比賽進(jìn)行到一定階段時(shí),統(tǒng)計(jì),,,這4個(gè)球隊(duì)已經(jīng)賽過的場(chǎng)數(shù)分別為:隊(duì)4場(chǎng),隊(duì)3場(chǎng), 隊(duì)2場(chǎng),隊(duì)1場(chǎng),則隊(duì)比賽過的場(chǎng)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“十三五”規(guī)劃確定了到2020年消除貧困的宏偉目標(biāo),打響了精準(zhǔn)扶貧的攻堅(jiān)戰(zhàn),為完成脫貧任務(wù),某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產(chǎn)某種型號(hào)醫(yī)療器械的月固定成本為20萬元,每生產(chǎn)1千件需另投入5.4萬元,設(shè)該公司一月內(nèi)生產(chǎn)該型號(hào)醫(yī)療器械x千件且能全部銷售完,每千件的銷售收入為萬元,已知
(1)請(qǐng)寫出月利潤(rùn)y(萬元)關(guān)于月產(chǎn)量x(千件)的函數(shù)解析式;
(2)月產(chǎn)量為多少千件時(shí),該公司在這一型號(hào)醫(yī)療器械的生產(chǎn)中所獲月利潤(rùn)最大?并求出最大月利潤(rùn)(精確到0.1萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國餐飲收入逐年增加
B. 2016年全國餐飲收入比2010年翻了一番以上
C. 2010~2016年全國餐飲收入同比增量最多的是2015年
D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線:與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線: ,動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)圓的圓心軌跡的方程;
(Ⅱ)過點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)恰好是雙曲線的一個(gè)焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn),則該雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com