已知兩點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P在y軸上的射影是H,且
PA
PB
=2
PH2

(1)求動(dòng)點(diǎn)P的軌跡C的方程(6分)
(2)已知過(guò)點(diǎn)B的直線l交曲線C于x軸下方不同的兩點(diǎn)M,N,求直線l的斜率的取值范圍(6分)
解(1)設(shè)P(x,y),則
PA
=(-2-x,-y),
PB
=(2-x,-y)
,
PH
=(-x,0),
因?yàn)?span dealflag="1" mathtag="math" >
PA
PB
=2
PH2

所以得y2-x2=4
(2)①若直線l的斜率不存在,直線l的方程為x=2,它與曲線C在x軸下方的部分只有一個(gè)交點(diǎn)(2,-2
2
)

②若直線l的斜率為0,則直線l是x軸,它與曲線C無(wú)交點(diǎn),所以,以上兩種情形與題設(shè)不符.
③設(shè)直線l之方程為y=k (x-2)(k≠0)
聯(lián)立
y=k(x-2)
y2-x2=4
消去x得(k2-1)y2-4ky=8k2=0
設(shè)M (x1,y1),N (x2,y2
則M,N在x軸下方?
k2-1≠0
16k2-4(k2-1)(-8k2)>0
4k
k2-1
<0
-8k2
k2-1
>0

解出
2
2
<k<1

k∈(
2
2
,1)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-2,0),B(0,2),點(diǎn)C是圓x2+y2-4x+4y+6=0上任意一點(diǎn),則點(diǎn)C到直線AB距離的最小值是
( 。
A、2
2
B、3
2
C、3
2
-2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P在y軸上的射影是H,且
PA
PB
=2
PH2

(1)求動(dòng)點(diǎn)P的軌跡C的方程(6分)
(2)已知過(guò)點(diǎn)B的直線l交曲線C于x軸下方不同的兩點(diǎn)M,N,求直線l的斜率的取值范圍(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•天門模擬)已知兩點(diǎn)A(-2,0),B(0,2),點(diǎn)P是曲線C:
x=1+cosa
y=sina
上任意一點(diǎn),則△ABP面積的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-2,0),B(2,0),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為-
3
4

(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓(x-1)2+y2=r20<r<
3
2
)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知兩點(diǎn)A(2,0),B(3,4),直線ax-2y=0與線段AB交于點(diǎn)C,且C分
AB
所成的比λ=2,則實(shí)數(shù)a的值為( 。
A、-4B、4C、-2D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案