(08年江蘇卷)(I)設(shè)是各項均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項得到的數(shù)列(按原來的順序)是等比數(shù)列:
(1)① 當(dāng)時,求的數(shù)值;②求的所有可能值;
(2)求證:對于一個給定的正整數(shù),存在一個各項及公差都不為零的等差數(shù)列,其中任意三項(按原來的順序)都不能組成等比數(shù)列。
【解析】本小題考查等差數(shù)列與等比數(shù)列的綜合運用。
(1)①當(dāng)n=4時, 中不可能刪去首項或末項,否則等差數(shù)列中連續(xù)三項成等比數(shù)列,則推出d=0。
若刪去,則,即化簡得,得
若刪去,則,即化簡得,得
綜上,得或。
②當(dāng)n=5時, 中同樣不可能刪去,否則出現(xiàn)連續(xù)三項。
若刪去,則,即化簡得,因為,所以不能刪去;
當(dāng)n≥6時,不存在這樣的等差數(shù)列。事實上,在數(shù)列中,由于不能刪去首項或末項,若刪去,則必有,這與矛盾;同樣若刪去也有,這與矛盾;若刪去中任意一個,則必有,這與矛盾。(或者說:當(dāng)n≥6時,無論刪去哪一項,剩余的項中必有連續(xù)的三項)
綜上所述,。
(2)假設(shè)對于某個正整數(shù)n,存在一個公差為d的n項等差數(shù)列,其中()為任意三項成等比數(shù)列,則,即,化簡得 (*)
由知,與同時為0或同時不為0
當(dāng)與同時為0時,有與題設(shè)矛盾。
故與同時不為0,所以由(*)得
因為,且x、y、z為整數(shù),所以上式右邊為有理數(shù),從而為有理數(shù)。
于是,對于任意的正整數(shù),只要為無理數(shù),相應(yīng)的數(shù)列就是滿足題意要求的數(shù)列。
例如n項數(shù)列1,,,……,滿足要求。
科目:高中數(shù)學(xué) 來源: 題型:
(08年江蘇卷)某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km, ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為ykm。
(I)按下列要求寫出函數(shù)關(guān)系式:
① 設(shè),將表示成的函數(shù)關(guān)系式;
② 設(shè),將表示成的函數(shù)關(guān)系式。
(II)請你選用(I)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長度最短。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年江蘇卷)某地區(qū)為了解70~80歲老人的日平均睡眠時間(單位:h),隨機選擇了50位老人進行調(diào)查。下表是這50位老人日睡眠時間的頻率分布表。
序號 (i) | 分組 (睡眠時間) | 組中值() | 頻數(shù) (人數(shù)) | 頻率 () |
1 | [4,5) | 4.5 | 6 | 0.12 |
2 | [5,6) | 5.5 | 10 | 0.20 |
3 | [6,7) | 6.5 | 20 | 0.40 |
4 | [7,8) | 7.5 | 10 | 0.20 |
5 | [8,9) | 8.5 | 4 | 0.08 |
在上述統(tǒng)計數(shù)據(jù)的分析中,一部分計算算法流程圖,則輸出的S的值是 ▲ 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年江蘇卷)【必做題】.請先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:.
(2)對于正整數(shù),求證:
(i); (ii); (iii).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com