如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點(diǎn)F的位置,并給出證明.
分析:(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;
(2)證法一:利用線面平行的判定定理即可證明;證法二:利用面面平行的判定定理.
解答:證明:(1)∵AA1⊥平面ABC,∴AA1⊥BC,
又∵AC⊥BC,AA1∩AC=A,
∴BC⊥平面AA1C1C,
∴BC⊥AC1
(2)解法一:當(dāng)AF=3FC時(shí),EF∥平面AA1B1B.
證明如下:在平A1B1C1內(nèi)過(guò)E作EG∥A1C1交A1B1于G,連接AG.
∵B1E=3EC1,∴
EG
A1C1
=
B1E
B1C1
=
3
4
,
又AF∥A1C1
AF
AC
=
AF
A1C1
=
3
4

∴AF∥EG且AF=EG,
∴四邊形AFEG為平行四邊形,∴EF∥GA,
又∵EF?面AA1B1B,AG?平面AA1B1B,
∴EF∥平面AA1B1B.
解法二:當(dāng)AF=3FC時(shí),F(xiàn)E∥平面A1ABB1
證明:在平面ABC內(nèi)過(guò)E作EG∥BB1交BC于G,連接FG.
∵EG∥BB1,EG?A1ABB1,BB1?平面A1ABB1
∴EG∥平面A1ABB1
∵B1E=3EC1,∴BG=3GC.
∴FG∥AB,
又AB?平面A1ABB1,F(xiàn)G?平面A1ABB1
∴FG∥平面A1ABB1
又EG∩FG=F,
∴平面EFG∥平面A1ABB1
∴EF∥平面A1ABB1
點(diǎn)評(píng):熟練掌握線面、面面平行和垂直的判定定理和性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1;
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案