【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面, 分別為的中點,點在線段上.

(Ⅰ)求證:平面

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

【答案】)詳見解析;(.

【解析】

試題分析:要證明線與面垂直,根據(jù)判定定理,需要證明線與平面內(nèi)的兩條相交直線垂直,根據(jù)中點易證明,所以可以將問題轉(zhuǎn)化為證明與平面內(nèi)的兩條相交直線垂直,即證明

根據(jù)上一問所證明的垂直關(guān)系,可以建立以為原點的空間直角坐標系,設(shè),根據(jù),表示點的坐標,首先求平面的法向量以及平面的法向量,并根據(jù)建立方程,.

試題解析:證明:在平行四邊形中,因為,,

所以

分別為的中點,得

因為側(cè)面底面,且

所以底面

又因為底面,

所以

又因為,平面平面,

所以平面

(Ⅱ)解:因為底面,所以兩兩垂直,故

分別為軸、軸和軸,如上圖建立空間直角坐標系,

所以,,,

設(shè),則,

所以,

易得平面的法向量

設(shè)平面的法向量為,

,得

為直線與平面所成的角和此直線與平面所成的角相等,

所以,即,

所以 ,

解得,或(舍).

綜上所得:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,則 的最小值為(
A.10
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一個平面去截正方體,對于截面的邊界,有以下圖形:①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形.則不可能的圖形的選項為(
A.③④⑤
B.①②⑤
C.①②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AC1是正方體ABCD﹣A1B1C1D1的對角線.

(1)求證:平面A1BD∥平面CD1B1;
(2)求證:直線AC1⊥直線BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓過點 , 分別為橢圓的右、下頂點,且

(1)求橢圓的方程;

(2)設(shè)點在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點

(i) 若, 關(guān)于軸對稱,求直線的斜率;

(ii) 求證: 的面積與的面積相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在y=2x2上有一點P,它到A(1,3)的距離與它到焦點的距離之和最小,則點P的坐標是(
A.(﹣2,1)
B.(1,2)
C.(2,1)
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,P、Q分別為邊AB、DA上的點,當△APQ的周長為2時,求∠PCQ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級A,B兩個班中各選出7名學生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學生的平均分是85分

(1)求m的值,并計算A班7名學生成績的方差s2;
(2)從成績在90分以上的學生中隨機抽取兩名學生,求至少有一名A班學生的概率.

查看答案和解析>>

同步練習冊答案