已知各項(xiàng)都不相等的等差數(shù)列的前六項(xiàng)和為60,且 的等比中項(xiàng).
(I)求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列的前n項(xiàng)和.
(1);(2).

試題分析:(1)根據(jù)題意,設(shè)出等差數(shù)列的公差,利用題中等差數(shù)列的前六項(xiàng)和為60,且 的等比中項(xiàng)求出,再利用題型公式和前項(xiàng)和公式求出;(2)根據(jù),可選擇累加法求出數(shù)列的通項(xiàng)公式,代入到,根據(jù)其特征,利用裂項(xiàng)相消法求出最終的結(jié)果.
試題解析:(1)設(shè)數(shù)列的公差是,則,即
,即                                      ②
由①②解得


由(1)知



……

累加,得




所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對(duì)任意自然數(shù)均有 成立,求  的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列是等差數(shù)列,,其中,則此數(shù)列的前項(xiàng)和_______ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列的前項(xiàng)和為,已知.
(1)求通項(xiàng)公式
(2)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)和為,若,,則等于(  )
A.12B.18C.24D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)Sn為等差數(shù)列{a n}的前n項(xiàng)和,已知a 9 =-2,S 8 =2.
(1)求首項(xiàng)a1和公差d的值;
(2)當(dāng)n為何值時(shí),Sn最大?并求出Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{an}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(Ⅱ) 設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將石子擺成如圖的梯形形狀.稱(chēng)數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,數(shù)列第項(xiàng)         ;第項(xiàng)         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)為實(shí)數(shù),為不超過(guò)實(shí)數(shù)的最大整數(shù),記,則的取值范圍為,現(xiàn)定義無(wú)窮數(shù)列如下:,當(dāng)時(shí),;當(dāng)時(shí),.如果,則       

查看答案和解析>>

同步練習(xí)冊(cè)答案