9.方程a+b+c+d=8的正整數(shù)解(a,b,c,d)有35組.(用數(shù)字作答)

分析 a+b+c+d=8的正整數(shù)解,轉(zhuǎn)化為8個(gè)球,7個(gè)空,在7個(gè)空中插入3個(gè)板,利用組合知識(shí)可得結(jié)論

解答 解:a+b+c+d=8的正整數(shù)解,轉(zhuǎn)化為8個(gè)球,7個(gè)空,在7個(gè)空中插入3個(gè)板,故共有${C}_{7}^{3}$=35組.
故答案為35.

點(diǎn)評(píng) 將a1+a2+…+an=m的一組正整數(shù)解一一對(duì)應(yīng)m-1個(gè)相同的球和n-1個(gè)插板的一個(gè)擺法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定義域?yàn)镽的奇函數(shù).
(1)求k的值.
(2)判斷并證明當(dāng)a>1時(shí),函數(shù)f(x)在R上的單調(diào)性;
(3)已知a=3,若f(3x)≥λ•f(x)對(duì)于x∈[1,2]時(shí)恒成立.請(qǐng)求出最大的整數(shù)λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow m$=($\sqrt{3}sin\frac{x}{4}$,1),$\overrightarrow n$=(cos$\frac{x}{4}$,${cos^2}\frac{x}{4}$),記f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{2π}{3}$個(gè)單位得到y(tǒng)=g(x)的圖象,討論函數(shù)y=g(x)-k在$[0,\frac{7π}{3}]$的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn)O,其圖象關(guān)于y軸對(duì)稱(chēng)且經(jīng)過(guò)點(diǎn)M(2,1).
(1)求拋物線C的方程;
(2)若一個(gè)等邊三角形的一個(gè)頂點(diǎn)位于坐標(biāo)原點(diǎn),另兩個(gè)頂點(diǎn)在拋物線上,求該等邊三角形的面積;
(3)過(guò)點(diǎn)M作拋物線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1k2=-2時(shí),試證明直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}中,an=$\frac{1}{(n+1)^{2}}$,記f(n)=(1-a1)(1-a2)…(1-an),試計(jì)算f(1),f(2),f(3)的值,推測(cè)f(n)的表達(dá)式為f(n)=$\frac{n+2}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.隨機(jī)調(diào)查高河鎮(zhèn)某社區(qū)80個(gè)人,以研究這一社區(qū)居民在20:00--22:00時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視看書(shū)合計(jì)
105060
101020
合計(jì)206080
(1)從這80人中按照性別進(jìn)行分層抽樣,抽出4人,則男女應(yīng)各抽取多少人;
(2)從第(1)問(wèn)抽取的4位居民中隨機(jī)抽取2位,恰有1男1女的概率是多少;
(3)由以上數(shù)據(jù),能否有99%的把握認(rèn)為在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點(diǎn)$(1,\frac{3}{2})$在橢圓上,
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1,k2滿足k1+k2=-1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函數(shù)g(x)=|f(x)|-1,若g(2-a2)>g(a),則實(shí)數(shù)a的取值范圍是( 。
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,a,b,c為角A,B,C的對(duì)邊,若$\frac{a}{cosA}=\frac{cosB}=\frac{c}{sinC}$,則△ABC是(  )
A.銳角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案