精英家教網 > 高中數學 > 題目詳情

【題目】已知三棱柱ABCA1B1C1的側棱垂直于底面,各頂點都在同一球面上,若該棱柱的體積為,AB2,AC1,∠BAC60°,則此球的表面積等于(

A.B.C.10πD.11π

【答案】A

【解析】

AB2AC1,∠BAC60°可得三角形ABC的面積及外接圓的半徑,再由三棱柱ABCA1B1C1的側棱垂直于底面,所以三棱柱的外接球的球心是過底面外接圓的圓心作垂直于底面的直線與中截面的交點,可得外接球的半徑,進而求出外接球的表面積.

AB2,AC1,∠BAC60°,由余弦定理可得:

BC

,∠ACB=9,∴底面外接圓的圓心在斜邊AB的中點,

設三角形ABC的外接圓的半徑為r,則r1,

所以VSABCAA1,所以可得AA12

因為三棱柱ABCA1B1C1的側棱垂直于底面,

所以三棱柱的外接球的球心是過底面外接圓的圓心作垂直于底面的直線與中截面的交點,

設外接球的半徑為R,則R2r2+212+122

所以外接球的表面積SR24π×2,

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正三棱柱的底面邊長為,點在邊上,是以點為直角頂點的等腰直角三角形.

1)求證:點邊的中點;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各函數中,滿足“”是“”的充分不必要條件的是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點為橢圓上一點,其中為橢圓的離心率,橢圓的長軸長是短軸長的兩倍.

1)求橢圓的方程;

2)已知(均不與點重合)是該橢圓上關于原點對稱的兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρsin2θ8cosθ0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系xOy.在直角坐標系中,傾斜角為α的直線l過點P(2,0)

(1)寫出曲線C的直角坐標方程和直線l的參數方程;

(2)設點Q與點G的極坐標分別為(2,π),若直線l經過點Q,且與曲線C相交于AB兩點,求△GAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

1)求處的切線方程以及的單調性;

2)對,有恒成立,求的最大整數解;

3)令,若有兩個零點分別為,的唯一的極值點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據統(tǒng)計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數據的散點圖,如圖所示.

1)依據數據的散點圖可以看出,可用線性回歸模型擬合的關系,請計算相關系數并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);

2)求關于的回歸方程,并預測液體肥料每畝使用量為千克時,西紅柿畝產量的增加量約為多少?

附:相關系數公式,回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知可導函數fx)的定義域為,且滿足,,則對任意的,“”是“”的( )

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓Γ的離心率為,左右焦點分別為F1,F2,且A、B分別是其左右頂點,P是橢圓上任意一點,△PF1F2面積的最大值為4.

1)求橢圓Γ的方程.

2)如圖,四邊形ABCD為矩形,設M為橢圓Γ上任意一點,直線MC、MD分別交x軸于E、F,且滿足,求證:AB2AD.

查看答案和解析>>

同步練習冊答案