(本小題12分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求在上的最小值;
(1)函數(shù)的增區(qū)間為和,減區(qū)間為和.
(2) 在上的最小值為
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的 運(yùn)用。求解函數(shù)的單調(diào)性以及函數(shù)的最值的綜合運(yùn)用。
(1)首先分析定義域,然后求解導(dǎo)數(shù),令導(dǎo)數(shù)為零,得到導(dǎo)函數(shù)與x軸 的交點(diǎn),然后分析導(dǎo)數(shù)大于零或者小于零的解得到結(jié)論。
(2)根據(jù)第一問(wèn)的結(jié)論,結(jié)合函數(shù)的單調(diào)性,可知函數(shù)在給定區(qū)間的最值問(wèn)題。
解:(1),
令,可得,,
當(dāng)變化時(shí),,的變化情況如下表:
0 |
1 |
||||||
- |
0 |
+ |
0 |
- |
0 |
+ |
|
極小值 |
極大值 |
極小值 |
函數(shù)的增區(qū)間為和,減區(qū)間為和.
(2)當(dāng)時(shí),
極小值極大值.
所以在上的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設(shè),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)
(A類)已知函數(shù)的圖象恒過(guò)定點(diǎn),且點(diǎn)又在函
數(shù)的圖象.
(1)求實(shí)數(shù)的值; (2)解不等式;
(3)有兩個(gè)不等實(shí)根時(shí),求的取值范圍.
(B類)設(shè)是定義在上的函數(shù),對(duì)任意,恒有
.
⑴求的值; ⑵求證:為奇函數(shù);
⑶若函數(shù)是上的增函數(shù),已知且,求的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知定理:若“為常數(shù),滿足,則函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱。”設(shè)函數(shù),定義域?yàn)锳。
(1)證明:函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱;
(2)當(dāng)時(shí),求函數(shù)值的取值范圍;
(3)對(duì)于給定的,設(shè)計(jì)構(gòu)造過(guò)程:,若,構(gòu)造過(guò)程將繼續(xù)下去;若,構(gòu)造過(guò)程都可以無(wú)限進(jìn)行下去,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設(shè),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設(shè),當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com