【題目】某公司租賃甲、乙兩種設備生產、兩類產品,甲種設備每天能生產類產品件和類產品件,乙種設備每天能生產類產品件和類產品件.已知設備甲每天的租賃費為元,設備乙每天的租賃費為元,現該公司至少要生產類產品件,類產品件,求所需租賃費最少為多少元?
科目:高中數學 來源: 題型:
【題目】某市教育局衛(wèi)生健康所對全市高三年級的學生身高進行抽樣調查,隨機抽取了100名學生,他們身高都處于五個層次,根據抽樣結果得到如下統計圖表,則從圖表中不能得出的信息是( )
A. 樣本中男生人數少于女生人數
B. 樣本中層次身高人數最多
C. 樣本中層次身高的男生多于女生
D. 樣本中層次身高的女生有3人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知位于軸左側的圓與軸相切于點且被軸分成的兩段圓弧長之比為,直線與圓相交于,兩點,且以為直徑的圓恰好經過坐標原點.
(1)求圓的方程;
(2)求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:()的離心率,左、右焦點分別為,,過右焦點任作一條不垂直于坐標軸的直線l與橢圓C交于A,B兩點,的周長為.
(1)求橢圓C的方程;
(2)記點B關于x軸的對稱點為點,直線交x軸于點D.求的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓C1:x2+y2﹣10x+4y+25=0與圓C2:x2+y2﹣14x+2y+25=0,點A,B分別是C1,C2上的動點,M為直線y=x上的動點,則|MA|+|MB|的最小值為( 。
A.3B.3C.5D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線與的交點為,四邊形為梯形,,.
(1)若,求證:平面;
(2)求證:平面平面;
(3)若,求與平面所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點到其焦點下的距離為10.
(1)求拋物線C的方程;
(2)設過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設移完n片金片總共需要的次數為an,可推得a1=1,an+1=2an+1.如圖是求移動次數在1000次以上的最小片數的程序框圖模型,則輸出的結果是( 。
A. 8B. 9C. 10D. 11
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com