【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:平方米,)進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當月在售二手房均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1﹣13分別對應(yīng)2018年1月至2019年1月).

(1)試估計該市市民的平均購房面積

(2)現(xiàn)采用分層抽樣的方法從購房耐積位于的40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.

(3)根據(jù)散點圖選擇兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值,如表所示:

請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年6月份的二手房購房均價(精確到).

參考數(shù)據(jù):,,,,,.參考公式:相關(guān)指數(shù)

【答案】(1)96;(2);(3)見解析

【解析】

1)利用組中值可求平均購房面積.

(2)由分層抽樣可得在抽取的4人有3人位于,1人位于,枚舉后可得基本事件的總數(shù)和隨機事件中基本事件的個數(shù),從而得到所求的概率.

(3)根據(jù)相關(guān)系數(shù)的大小可得的擬合效果更好,從而可預測2019年6月份的二手房購房均價.

解:(1)

(2)設(shè)從位于的市民中抽取人,從位于的市民中抽取人,

由分層抽樣可知:,解得,

在抽取的4人中,記3名位于的市民為:,1名位于的市民為

從這4人中隨機抽取2人,共有:

,故基本事件總數(shù),

其中恰有一人在的情況共有種,

設(shè)為“這2人的購房面積恰好有一人在”,則

(3)設(shè)模型的相關(guān)指數(shù)分別為,,

,,∴,

∴模型的擬合效果更好.

2019年6月份對應(yīng)的

萬元/平方米.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面上給定相異兩點A,B,設(shè)P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于兩點,設(shè)直線的方程為.

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于兩點.(i),求直線的方程;(ii)直線與直線相交于點,直線,直線,直線的斜率分別為,,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,點,,過點的平行線交于點.設(shè)點的軌跡為.

(Ⅰ)求曲線的方程;

(Ⅱ)已知直線與圓相切于點,且與曲線相交于,兩點,的中點為,求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.

(參考公式:線性回歸方程中的估計值分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在正四棱錐P-ABCD中,側(cè)棱與底面成角為60°,且側(cè)面積為,則四棱錐P-ABCD的內(nèi)切球的表面積為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)經(jīng)過點,直線與拋物線有兩個不同的交點、,直線軸于,直線軸于.

(1)若直線過點,求直線的斜率的取值范圍;

(2)若直線過點,設(shè),,,求的值;

(3)若直線過拋物線的焦點,交軸于點,,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在合作學習小組的一次活動中,甲、乙、丙、丁、戊五位同學被隨機地分配承擔,,四項不同的任務(wù),每個同學只能承擔一項任務(wù).

(1)若每項任務(wù)至少安排一位同學承擔,求甲、乙兩人不同時承擔同一項任務(wù)的概率;

(2)設(shè)這五位同學中承擔任務(wù)的人數(shù)為隨機變量,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案