【題目】如圖,已知拋物線C,過拋物線焦點F的直線交拋物線CA,B兩點,P是拋物線外一點,連接,分別交拋物線于點CD,且,設,的中點分別為M,N.

1)求證:軸;

2)若,求面積的最小值.

【答案】1)證明見解析(2

【解析】

1)設直線的方程為,聯(lián)立直線方程和拋物線方程,消去后利用韋達定理及中點坐標公式即可求得,即可求得軸;

2)根據(jù)向量的坐標運算及點在拋物線上,即可求得,根據(jù)三角形的面積公式即可求得面積的最小值.

1)拋物線C的焦點,設,,

直線的方程為,

,消去x,整理得

,,,因為,

所以,即,

,所以軸.

2)由(1)可知,,則

,由,,得,,

代入拋物線,得到,

同理,

所以為方程,

,所以

M,NP三點共線,

,所以,

所以,

面積的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)當時,求曲線在點處的切線方程;

)若,討論函數(shù)的單調(diào)性與單調(diào)區(qū)間;

)若有兩個極值點、,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當吋,解不等式;

2)設.

①當時,若存在,使得,證明:;

②當時,討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,斜率為的直線與橢圓交于,兩點,點在直線的左上方.

1)若以為直徑的圓恰好經(jīng)過橢圓右焦點,求此時直線的方程;

2)求證:的內(nèi)切圓的圓心在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點處的切線方程;

2)設函數(shù)上有且只有一個零點,求的取值范圍.(其中,為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

的必要不充分條件

②函數(shù)的最小值為2

③命題,的否定是,

④已知雙曲線過點,且漸近線為,則離心率,其中所有正確命題的編號是:_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】檢驗中心為篩查某種疾病,需要檢驗血液是否為陽性,對份血液樣本,有以下兩種檢驗方式:①逐份檢驗,需要檢驗次;②混合檢驗,即將其中)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這份血液究竟哪幾份為陽性,再對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.

1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為點.時,根據(jù)的期望值大小,討論當取何值時,采用逐份檢驗方式好?

(參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙、丙、丁、戊5種在線教學軟件,若某學校要從中隨機選取3種作為教師“停課不停學”的教學工具,則其中甲、乙、丙至多有2種被選取的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為拋物線上不同的兩點,且,點于點.

(1)求的值;

(2)過軸上一點 的直線,兩點,的準線上的射影分別為的焦點,若,求中點的軌跡方程.

查看答案和解析>>

同步練習冊答案