【題目】已知:正三棱柱中, , , 為棱的中點(diǎn).
()求證: 平面.
()求證:平面平面.
()求四棱錐的體積.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】試題分析:
(1)要證線(xiàn)面平行,就是要證線(xiàn)線(xiàn)平行,考慮過(guò)直線(xiàn)的平面與平面的交線(xiàn)(其中是與的交點(diǎn)),而由中位線(xiàn)定理易得,從而得線(xiàn)面平行;
(2)由于是正三角形,因此有,從而只要再證與平面內(nèi)另一條直線(xiàn)垂直即可,這可由正棱柱的側(cè)棱與底面垂直得到,從而得線(xiàn)面垂直,于是有面面垂直;
(3)要求四棱錐的體積,由正三棱柱的性質(zhì)知中,邊的高就是四棱錐的高,再求得四邊形的面積,即可得體積.
試題解析:
()證明:連接,交于點(diǎn),連接,
∵在中,
, 分別是, 中點(diǎn),
∴,
∵平面,
平面,
∴平面,
()證明:∵在等邊中,
是棱中點(diǎn),
∴,
又∵在正三棱柱中,
平面,
平面,
∴,
∵點(diǎn),
, 平面,
∴平面,
∵平面,
∴平面平面.
()作于點(diǎn),
∴是四棱錐高,
,
底面積,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn)與圓相切,且交橢圓于, 兩點(diǎn), 是橢圓的半焦距, .
(1)求的值;
(2)為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為, ,動(dòng)點(diǎn),直線(xiàn), 與直線(xiàn)分別交于, 兩點(diǎn),求線(xiàn)段的長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條不重合的直線(xiàn)和兩個(gè)不重合的平面,若,則下列四個(gè)命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.
(Ⅰ)試比較與的大小,并說(shuō)明理由;
(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn), ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線(xiàn)相切,記動(dòng)圓的圓心的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)設(shè)曲線(xiàn)上一點(diǎn)的橫坐標(biāo)為,過(guò)的直線(xiàn)交于一點(diǎn),交軸于點(diǎn),過(guò)點(diǎn)作的垂線(xiàn)交于另一點(diǎn),若是的切線(xiàn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時(shí)間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時(shí)間介于1小時(shí)和11小時(shí)之間,按學(xué)生的學(xué)習(xí)時(shí)間分成5組:第一組,第二組,第三組,第四組,第五組,繪制成如圖所示的頻率分布直方圖.
(1)求學(xué)習(xí)時(shí)間在的學(xué)生人數(shù);
(2)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人學(xué)習(xí)時(shí)間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng).
(1)求a、b的值和函數(shù)的零點(diǎn)
(2)當(dāng)函數(shù)f(x)的定義域是[0,3]時(shí),求函數(shù)f(x)的值域..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米。某城市環(huán)保部分隨機(jī)抽取的一居民區(qū)過(guò)去20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 | PM2.5平均濃度 | 頻數(shù) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(II)求樣本平均數(shù),并根據(jù)樣本估計(jì)總計(jì)的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com